CL

Claudia Linnhoff-Popien

7 records found

Authored

SATQUBOLIB

A Python Framework for Creating and Benchmarking (Max-)3SAT QUBOs

In this paper, we present an open-source Python framework, called satqubolib. This framework aims to provide all necessary tools for solving (MAX)-3SAT problems on quantum hardware systems via Quadratic Unconstrained Binary Optimization (QUBO). Our framework solves two major i ...

A common way of solving satisfiability instances with quantum methods is to transform these instances into instances of QUBO. State-of-the-art transformations from MAX-3SAT to QUBO work by mapping clauses of a 3SAT formula associated with the MAX-3SAT instance to an instance of Q ...

Pattern QUBOs

Algorithmic Construction of 3SAT-to-QUBO Transformations

One way of solving 3sat instances on a quantum computer is to transform the 3sat instances into instances of Quadratic Unconstrained Binary Optimizations (QUBOs), which can be used as an input for the QAOA algorithm on quantum gate systems or as an input for quantum annealers. ...

To solve 3sat instances on quantum annealers they need to be transformed to an instance of Quadratic Unconstrained Binary Optimization (QUBO). When there are multiple transformations available, the question arises whether different transformations lead to differences in the ob ...

The Stable Marriage Problem (SMP) describes the problem, of finding a stable matching between two equally sized sets of elements (e.g., males and females) given an ordering of preferences for each element. A matching is stable, when there does not exist any match of a male and ...

Quadratic Unconstrained Binary Optimization (QUBO) can be seen as a generic language for optimization problems. QUBOs attract particular attention since they can be solved with quantum hardware, like quantum annealers or quantum gate computers running QAOA. In this paper, we p ...

Quadratic unconstrained binary optimization (QUBO) has become the standard format for optimization using quantum computers, i.e., for both the quantum approximate optimization algorithm (QAOA) and quantum annealing (QA). We present a toolkit of methods to transform almost arbitra ...