Transmission electron microscopy (TEM) of (de-)hydrogenation reactions is crucial to characterize efficiency of hydrogen storage materials. The nanoreactor, a micromachined channel with 15-nm-thick windows, effectively confines the gas flow to an electron-transparent chamber duri
...
Transmission electron microscopy (TEM) of (de-)hydrogenation reactions is crucial to characterize efficiency of hydrogen storage materials. The nanoreactor, a micromachined channel with 15-nm-thick windows, effectively confines the gas flow to an electron-transparent chamber during TEM of reactions. Realistic experiments require very high pressures to be sustained by the device. Nanomechanical bulge tests and simulations show that due to a very strong size effect, ultra-thin device components can reliably withstand tensile stresses as high as 19.5¿GPa enabling high pressure operation. We use the device to characterize Pd particles under a 4-bar H2 pressure within the ultra-high-vacuum of the TEM@en