To address the problem of training on small datasets for action recognition tasks, most prior works are either based on a large number of training samples or require pre-trained models transferred from other large datasets to tackle overfitting problems. However, it limits the re
...
To address the problem of training on small datasets for action recognition tasks, most prior works are either based on a large number of training samples or require pre-trained models transferred from other large datasets to tackle overfitting problems. However, it limits the research within organizations that have strong computational abilities. In this work, we try to propose a data-efficient framework that can train the model from scratch on small datasets while achieving promising results. Specifically, by introducing a 3D central difference convolution operation, we proposed a novel C3D neural network-based two-stream (Rank Pooling RGB and Optical Flow) framework for the task. The method is validated on the action recognition track of the ECCV 2020 VIPriors challenges and got the 2nd place (88.31%). It is proved that our method can achieve a promising result even without a pre-trained model on large scale datasets. The code will be released soon. @en