BG
Bharathram Ganapathisubramani
13 records found
1
Accurate predictions of the drag penalty in rough-wall flows require careful characterisation of surface roughness to determine the equivalent sand-grain roughness height (ks). The procedure involves measuring wall-shear stress (τw) using direct or indirect
...
The floating-element (FE) principle, introduced nearly a century ago, remains one of the most versatile direct wall shear stress measurement methods. Yet, its intrinsic sources of systematic error, associated with the flow-exposed gap, off-axis load sensitivity, and calibration,
...
The hydrodynamic influence of surface texture on static surfaces ranges from large drag penalties (roughness) to potential performance benefits (shark-like skin). Although it is of wide-ranging research interest, the impact of roughness on flapping systems has received limited at
...
In this work, we describe the impact of aspect ratio on the performance of optimally phased, identical flapping flippers in a tandem configuration. Three-dimensional simulations are performed for seven sets of single and tandem finite foils at a moderate Reynolds number, with thr
...
Full-scale drag penalty predictions of flows over rough walls require surface roughness characterisation from laboratory experiments or numerical simulations. In either approach, it is necessary to determine the so-called equivalent sand-grain roughness height (ks ). T
...
The importance of the leading-edge sweep angle of propulsive surfaces used by unsteady swimming and flying animals has been an issue of debate for many years, spurring studies in biology, engineering, and robotics with mixed conclusions. In this work, we provide results from thre
...
Flapping flight and swimming are increasingly studied due to both their intrinsic scientific richness and their applicability to novel robotic systems. Strip theory is often applied to flapping wings, but such modeling is only rigorously applicable in the limit of infinite aspect
...
Symmetric flapping foils are known to produce deflected jets at high frequency-amplitude combinations even at a zero mean angle of attack. This reduces the frequency range of useful propulsive configurations without side force. In this study, we numerically analyse the interactio
...
Propulsive flapping foils are widely studied in the development of swimming and flying animal-like autonomous systems. Numerical studies in this topic are mainly two-dimensional (2-D) studies, as they are quicker and cheaper, but this inhibits the three-dimensional (3-D) evolutio
...
Reversed von Kármán streets are responsible for a velocity surplus in the wake of flapping foils, indicating the onset of thrust generation. However, the wake pattern cannot be predicted based solely on the flapping peak-to-peak amplitude and frequency because the transition also
...
The propulsive performance of a pair of tandem flapping foils is sensitively dependent on the spacing and phasing between them. Large increases in thrust and efficiency of the hind foil are possible, but the mechanisms governing these enhancements remain largely unresolved. Two-d
...
The extinct ocean-going plesiosaurs were unique within vertebrates because they used two flipper pairs identical in morphology for propulsion. Although fossils of these Mesozoic marine reptiles have been known for more than two centuries, the function and dynamics of their tandem
...
The aim of this article is to provide a theoretical basis upon which to advance and deploy novel tandem flapping foil systems for efficient marine propulsion. We put forth three key insights into tandem flapping foil hydrodynamics related to their choreography, propulsive efficie
...