XQ

Xinghua Qu

4 records found

Most existing bundle generation approaches fall short in generating fixed-size bundles. Furthermore, they often neglect the underlying user intents reflected by the bundles in the generation process, resulting in less intelligible bundles. This paper addresses these limitations t ...

DaisyRec 2.0

Benchmarking Recommendation for Rigorous Evaluation

Recently, one critical issue looms large in the field of recommender systems - there are no effective benchmarks for rigorous evaluation - which consequently leads to unreproducible evaluation and unfair comparison. We, therefore, conduct studies from the perspectives of practica ...

Revisiting Bundle Recommendation

Datasets, Tasks, Challenges and Opportunities for Intent-aware Product Bundling

Product bundling is a commonly-used marketing strategy in both offline retailers and online e-commerce systems. Current research on bundle recommendation is limited by: (1) noisy datasets, where bundles are defined by heuristics, e.g., products co-purchased in the same session; a ...
With tremendous amount of recommendation algorithms proposed every year, one critical issue has attracted a considerable amount of attention: there are no effective benchmarks for evaluation, which leads to two major concerns, i.e., unreproducible evaluation and unfair comparison ...