This study treats a detached homogenous low-crested structure (HLCS) made of Cubipod concrete elements placed seaward of a vertical wall (forming a basin in between) to reduce overtopping. Assessing the complex hydrodynamics and effects of changing the geometry of such a system in relation to overtopping reduction is challenging. The numerical model OpenFOAM was applied to this end. Forchheimer coefficients for wave transmission and the flow through the HLCS were calibrated and validated using existing physical modeling data (α = 500 and β = 1.0, with varying porosity based on the Cubipod shape), while the effect of the basin and vertical seawall was determined fully numerically. The crest freeboard (Rc), crest width (B), and basin length (LB) were the main geometrical parameters that influenced the performance of the HLCS in reducing overtopping. An exponential decay was observed in the overtopping discharge when the values of these geometrical parameters increased. As LB increased, this decay was primarily due to the dissipation of the broken-wave bores. The largest gradient in the predicted overtopping discharge was noted at Rc/Hs,i ≈ 0, B/Hs,i ≈ 4.5, and LB/Lp ≈ 1.2, where Hs,i is the incident significant wave height and Lp is the peak wavelength in the basin.
@en