AG

13 records found

We consider the propagation of smooth solitary waves in a two-dimensional generalization of the Camassa–Holm equation. We show that transverse perturbations to one-dimensional solitary waves behave similarly to the KP-II theory. This conclusion follows from our two main results: ...
We derive a precise energy stability criterion for smooth periodic waves in the Degasperis–Procesi (DP) equation. Compared to the Camassa-Holm (CH) equation, the number of negative eigenvalues of an associated Hessian operator changes in the existence region of smooth periodic wa ...
We develop a Korteweg-De Vries (KdV) theory for weakly nonlinear waves in discontinuously stratified two-layer fluids with a generally prescribed rotational steady current. With the help of a classical asymptotic power series approach, these models are directly derived from the d ...
We solve the open problem of spectral stability of smooth periodic waves in the Camassa–Holm equation. The key to obtaining this result is that the periodic waves of the Camassa–Holm equation can be characterized by an alternative Hamiltonian structure, different from the standar ...
It is well known that the existence of traveling wave solutions (TWS) for many partial differential equations (PDE) is a consequence of the fact that an associated planar ordinary differential equation (ODE) has certain types of solutions defined for all time. In this paper we ad ...
We present a comprehensive introduction and overview of a recently derived model equation for waves of large amplitude in the context of shallow water waves and provide a literature review of all the available studies on this equation. Furthermore, we establish a novel result con ...
We show that a family of certain definite integrals forms a Chebyshev system if two families of associated functions appearing in their integrands are Chebyshev systems as well. We apply this criterion to several examples which appear in the context of perturbations of periodic n ...
We show that the peaked periodic traveling wave of the reduced Ostrovsky equations with quadratic and cubic nonlinearity is spectrally unstable in the space of square integrable periodic functions with zero mean and the same period. We discover that the spectrum of a linearized o ...
Our aim is to study the effect of a continuous prescribed density variation on the propagation of ocean waves. More precisely, we derive KdV-type shallow water model equations for unidirectional flows along the Equator from the full governing equations by taking into account a pr ...
The stability of the peaked periodic wave in the reduced Ostrovsky equation has remained an open problem for a long time. In order to solve this problem we obtain sharp bounds on the exponential growth of the L ...
We present derivations of shallow water model equations of Korteweg–de Vries and Boussinesq type for equatorial tsunami waves in the f-plane approximation and discuss their applicability.@en
Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the ...
We show that for a large class of evolutionary nonlinear and nonlocal partial differential equations, symmetry of solutions implies very restrictive properties of the solutions and symmetry axes. These restrictions are formulated in terms of three principles, based on the structu ...