QL

10 records found

Dynamical processes running on different networks behave differently, which makes the reconstruction of the underlying network from dynamical observations possible. However, to what level of detail the network properties can be determined from incomplete measurements of the dynam ...
Habitat loss can trigger migration network collapse by isolating migratory bird breeding grounds from nonbreeding grounds. Theoretically, habitat loss can have vastly different impacts depending on the site's importance within the migratory corridor. However, migration‐network co ...
In previous modelling efforts to understand the spreading process on networks, each node can infect its neighbors and cure spontaneously, and the curing is traditionally assumed to occur uniformly over time. This traditional curing is not optimal in terms of the trade-off between ...
Although non-Markovian processes are considerably more complicated to analyze, real-world epidemics are likely non-Markovian, because the infection time is not always exponentially distributed. Here, we present analytic expressions of the epidemic threshold in a Weibull and a Gam ...
To shed light on the disease localization phenomenon, we study a bursty susceptible-infected-susceptible (SIS) model and analyze the model under the mean-field approximation. In the bursty SIS model, the infected nodes infect all their neighbors periodically, and the near-thresho ...
In this paper, we focus on the autocorrelation of the susceptible-infected-susceptible (SIS) process on networks. The N-intertwined mean-field approximation (NIMFA) is applied to calculate the autocorrelation properties of the exact SIS process. We derive the autocorrelation of t ...
Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) proc ...
One of the most important quantities of the exact Markovian SIS epidemic process is the time-dependent prevalence, which is the average fraction of infected nodes. Unfortunately, the Markovian SIS epidemic model features an exponentially increasing computational complexity with g ...
An accurate approximate formula of the die-out probability in a SIS epidemic process on a network is proposed. The formula contains only three essential parameters: the largest eigenvalue of the adjacency matrix of the network, the effective infection rate of the virus, and the i ...