Models for oxygen transport in preterm infants can aid the development and evaluation of automated oxygen controllers by providing insight into the FiO2-SpO2 response and enabling virtual trials. A computer simulation model of oxygen transport in preterm infants is developed and
...
Models for oxygen transport in preterm infants can aid the development and evaluation of automated oxygen controllers by providing insight into the FiO2-SpO2 response and enabling virtual trials. A computer simulation model of oxygen transport in preterm infants is developed and FiO2-SpO2 responses in preterm infants are investigated. The model consists of a respiration and circulation submodule, interconnected by a pulmonary gas exchange submodule. Literature-based parameter ranges are provided. The model's ability to reproduce a patient's FiO2-SpO2 response, be generalised to different FiO2-SpO2 responses, and replicate physiological shunting and apnea scenarios is investigated. FiO2-SpO2 responses in preterm infants exhibit high variability and few responses are found stable. The model could be calibrated to specific FiO2-SpO2 responses using literature-based parameter ranges and could replicate physiologically expected shunting and apnea scenarios. The calibrated model could not be generalised to another FiO2-SpO2 response. The developed model for oxygen transport in preterm infants is a useful, modular, well-documented framework that can be used to develop and evaluate automated oxygen controllers.