PH

P. Hofman

5 records found

A numerical framework for simulating progressive failure under high-cycle fatigue loading is validated against experiments of composite quasi-isotropic open-hole laminates. Transverse matrix cracking and delamination are modeled with a mixed-mode fatigue cohesive zone model, cove ...
A numerical framework for simulating progressive failure under high-cycle fatigue loading is validated against experiments of composite quasi-isotropic open-hole laminates. Transverse matrix cracking and delamination are modeled with a mixed-mode fatigue cohesive zone model, cove ...

Unifying creep and fatigue modeling of composites

A time-homogenized micromechanical framework with viscoplasticity and cohesive damage

A micromechanical model for simulating failure of unidirectional composites under cyclic loading has been developed and tested. To efficiently pass through the loading signal, a two-scale temporal framework with adaptive stepping is proposed, with a varying step size between macr ...
In this work, a recently proposed high-cycle fatigue cohesive zone model, which covers crack initiation and propagation with limited input parameters, is embedded in a robust and efficient numerical framework for simulating progressive failure in composite laminates under fatigue ...
A common choice for multiscale modeling of the mechanical response of composites is to use periodic boundary conditions (PBCs) on square and cubical representative volume elements (RVEs). However, when strain localization occurs in the micromodel, these PBCs are unable to reprodu ...