AM
Andrea Morello
6 records found
1
For the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary
...
Magnetic fields are a standard tool in the toolbox of every physicist and are required for the characterization of materials, as well as the polarization of spins in nuclear magnetic resonance or electron paramagnetic resonance experiments. Quite often, a static magnetic field of
...
We identify the presence of monatomic steps at the Si/SiGe or Si/SiO2 interface as a dominant source of variations in the dephasing time of silicon (Si) quantum dot (QD) spin qubits. First, using atomistic tight-binding calculations we show that the g-factors and their Stark shif
...
The understanding of weak measurements and interaction-free measurements has greatly expanded the conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-strength weak measurements of the electron and nuclear spin states of a P31
...
Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the succe
...
We define single electron spin qubits in a silicon metal-oxide-semiconductor double quantum dot system. By mapping the qubit resonance frequency as a function of a gate-induced electric field, the spectrum reveals an anticrossing that is consistent with an intervalley spin-orbit
...