N. Khossossi
42 records found
1
Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction (HER), which faces challenges of slow kinetics and high overpotential. Efficient electrocatalysts, particularly single-atom catalysts (SACs) on two-dimensional (2D) materials, are
...
Two-dimensional (2D) Janus monolayers, distinguished by their intrinsic vertical electric fields, emerge as highly efficient and eco-friendly materials for advancing the field of hydrogen evolution reactions (HER). In this study, we explore, for the first time, the potential viab
...
Lithium–sulfur (Li–S) batteries, renowned for their potential high energy density, have attracted attention due to their use of earth-abundant elements. However, a significant challenge lies in developing suitable materials for both lithium-based anodes, which are less prone to l
...
Enhanced band gap energy of one-pot mechano-synthesized Ag3PO4 for Orange G photodegradation under visible light irradiation
An in-depth experimental and DFT studies
The present study highlights the efficiency of Ag3PO4 photocatalyst with a band gap of 2.25 eV, synthesized by a green and one-pot simple mechanochemical method, towards photodegradation of orange G under visible irradiation. The phase structure, morphology,
...
Solar cells are expected to become one of the dominant electricity generation technologies in the coming decades. Developing high-performance absorbers made from thin materials is a promising pathway to improve efficiency and reduce cost, accelerating the widespread adoption of t
...
Empowering lithium-ion batteries
The potential of 2D o-Al2N2 as an exceptional anode material through DFT analysis
Finding an appropriate new anode material with high electrochemical performance for lithium-ion batteries (LIBs) is considered one of the significant challenges for both the academic and industrial research communities. Herein, we propose to explore the efficiency of a newly desi
...
2D Ge2Se2P4 Monolayer
A Versatile Photocatalyst for Sustainable Water Splitting
This study aims to identify photo-/electrocatalysts that can enhance the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR), which are of utmost importance in electro-/photochemical energy systems, such as solar energy, fuel ce
...
Owing to their ecological integrity, non-toxicity, and outstanding performances, Double-Halide perovskites have been vigorously promoted as sustainable alternatives for thermoelectric and photovoltaic applications. In this context, we have systematically explored the structural a
...
Through a density functional theory-driven survey, a comprehensive investigation of two-dimensional (2D) Janus aluminum-based monochalcogenides (Al2XY with X/Y = S, Se, and Te) has been performed within this study. To begin with, it is established that the examined pha
...
An attractive approach to mitigate hydrogen embrittlement (HE) is to use nano-sized particles to immobilize hydrogen. However, the atomic scale relationship between different particle-matrix characteristics in aluminum alloys and the susceptibility to HE is unknown. In this study
...
Graphyne-based membrane as a promising candidate for Li-Battery electrodes protection
Insight from atomistic simulations
All-solid electrolytes could lead to a technological breakthrough in the performance of all-solid-state batteries when combined with a lithium-metal anode. However, the use of a lithium-metal anode presents several challenges, such as dendrite growth, interface electrochemical st
...
A primary concern towards achieving a robust and sustainable water-splitting strategy consists in the development and designing of non-precious hydrogen evolution electrocatalysts capable of operating at relatively high current densities. In the present density functional theory
...
Halide-based double perovskites have recently been promoted as high-performing semiconductors for photovoltaic and thermoelectricity applications owing to their outstanding efficiency, non-toxicity and ecological stability. In the framework of this research, we have systematicall
...
Organic electrode materials are becoming increasingly important as they reduce the C-footprint as well as the production cost of currently used and studied rechargeable batteries. With increasing demand for high-energy-density devices, over the past few decades, various innovativ
...
Through density functional theory (DFT)-based computations, a systematic exploration of the newly predicted 2D phosphorene allotrope, namely holey-phosphorene (HP), is carried out. It is revealed that HP shows a semiconducting nature with an indirect bandgap of 0.83 eV upon Perde
...
To achieve the high-rate efficiency in a electrochemical energy storage technologies, it is vital for the battery anode to be electronically as well as ionically conductive. Such a requirement has boosted the survey of three-dimensional (3D) porous networks made up of light-weigh
...
We explore the possibility and potential benefit of rolling a Si2BN sheet into single-walled nanotubes (NTs). Using density functional theory (DFT), we consider both structural stability and the impact on the nature of chemical bonding and conduction. The structure is similar to
...
Motivated by the successful synthesis of 2D C2F diamanes [Bakharev, P.V. et al., Nat. Nanotechnol. 15, 59–66 (2020)], we have systematically investigated the structural stability, in-plane mechanical, optoelectronic, photocatalytic, piezoelectric, and thermoelectric pr
...