The Pan-Eurasian and African Continents are characterized by large ranges of climates varying from humid, semi-humid, semi-arid and arid regions, and great challenges exist in water allocation for different sectors that related to water resource and food security, which depends s
...
The Pan-Eurasian and African Continents are characterized by large ranges of climates varying from humid, semi-humid, semi-arid and arid regions, and great challenges exist in water allocation for different sectors that related to water resource and food security, which depends strongly on the water use information. Quantitative information on water use is also important to understand the effectiveness of water allocation and further to prevent from water stress resulted by drought in water-scarce regions. Explosive development of satellite remote sensing observations provide great chance to provide useful spatiotemporal information for quantifying the water use at regional to global scales. In this paper, a process-based model ETMonitor was used in combination with biophysical and hydrological parameters retrieved from earth observations to estimate the actual evapotranspiration, i.e. the agricultural and ecological water use. The total water use is also partitioned into beneficial part, e.g. plant transpiration, and non-beneficial part, e.g. soil evaporation and canopy rainfall interception, according to the water accounting framework. The estimated water use show good agreements with the ground observation, indicating the ability of ETMonitor for global and continental scale water use estimation. The spatial and temporal patterns of the water use in the Pan-Eurasian and African Continents were further analysed, while large spatial variation of water use was convinced. Current study also highlights the great capability of satellite observations in studying the regional water resource and continental water cycle.
@en