FB

106 records found

NaI gamma camera performance for high energies

Effects of crystal thickness, photomultiplier tube geometry and light guide thickness

Background: Gamma camera imaging, including single photon emission computed tomography (SPECT), is crucial for research, diagnostics, and radionuclide therapy. Gamma cameras are predominantly based on arrays of photon multipliers tubes (PMTs) that read out NaI(Tl) scintillation c ...
Objective. Advanced pinhole collimation geometries optimized for preclinical high-energy ɣ imaging facilitate applications such as ɑ and ß emitter imaging, simultaneous multi-isotope PET and PET/SPECT, and positron range-free PET. These geometries replace each pinhole with a grou ...

Inventing His Own Career Path

Freek Beekman Talks with Johannes Czernin and Christine Mona About Success in Academia and Industry

Johannes Czernin, MD, editor-in-chief of The Journal of Nuclear Medicine (JNM) and a professor at the David Geffen School of Medicine at UCLA, and Christine Mona, PhD, an assistant professor in Molecular and Medical Pharmacology at UCLA, spoke with Frederik (Freek) J. Beekman, Ph ...
Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. We introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide evidence of the specifi ...
Nanoparticles are ultrafine particulate matter having considerable potential for treatment of central nervous system (CNS) disorders. Despite their tiny size, the blood-brain barrier (BBB) restricts their access to the CNS. Their direct cerebrospinal fluid (CSF) administration by ...
Microscopic nuclear imaging down to spatial resolutions of a few hundred microns can already be achieved using low-energy gamma emitters (e.g. 125I, ∼30 keV) and a basic single micro-pinhole gamma camera. This has been applied to in vivo mouse thyroid imaging, for exam ...
Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and p ...
A variety of polymer micelles are designed for the delivery of chemotherapeutic drugs to tumors. Although the promise of these nanocarriers is very high, in the clinic the effectivity is rather limited. Determining the in vivo fate of the micelles can greatly help to improve this ...
SPECT imaging with 123I-FP-CIT is used for diagnosis of neurodegenerative disorders like Parkinson's disease. Attenuation correction (AC) can be useful for quantitative analysis of 123I-FP-CIT SPECT. Ideally, AC would be performed based on attenuation maps (μ-maps) derived from p ...
Despite improvements in small animal PET instruments, many tracers cannot be imaged at sufficiently high resolutions due to positron range, while multi-tracer PET is hampered by the fact that all annihilation photons have equal energies. Here we realize multi-isotope and sub-mm r ...
The use of multi-pinhole collimation has enabled ultra-high-resolution imaging of SPECT and PET tracers in small animals. Key for obtaining high-quality images is the use of statistical iterative image reconstruction with accurate energy-dependent photon transport modelling throu ...
Background: Calcification and inflammation are atherosclerotic plaque compositional biomarkers that have both been linked to stroke risk. The aim of this study was to evaluate their co-existing prevalence in human carotid plaques with respect to plaque phenotype to determine the ...
Recent insights suggest that the osteochondral interface plays a central role in maintaining healthy articulating joints. Uncovering the underlying transport mechanisms is key to the understanding of the cross-talk between articular cartilage and subchondral bone. Here, we descri ...
In clinical brain SPECT, correction for photon attenuation in the patient is essential to obtain images which provide quantitative information on the regional activity concentration per unit volume (kBq). This correction generally requires an attenuation map (map) denoting the at ...

EXIRAD-3D

Fast automated three-dimensional autoradiography

Introduction: Autoradiography is an established technique for high-resolution imaging of radiolabelled molecules in biological tissue slices. Unfortunately, creating a 3D image from a set of these 2D images is extremely time-consuming and error-prone. MicroSPECT systems provide s ...

EXIRAD-HE

Multi-pinhole high-resolution ex vivo imaging of high-energy isotopes

We recently developed a dedicated focusing multi-pinhole collimator for a stationary SPECT system that offers down to 120 m (or 1.7 nL) spatial resolution SPECT images of cryo-cooled tissue samples (EXIRAD-3D). This collimator is suitable for imaging isotopes that are often used ...
In recent years, breast imaging using radiolabelled molecules has attracted significant interest. Our group has proposed a multi-pinhole molecular breast tomosynthesis (MP-MBT) scanner to obtain 3D functional molecular breast images at high resolutions. After conducting extensive ...
Photomultiplier tube (PMT)-based scintillation cameras are predominant in molecular imaging but have the drawback that position estimation is severely degraded near the edges (dead edge effect). This leads to sensitivity losses and can cause severe problems in applications like m ...
Purpose: Atherosclerotic plaque development and progression signifies a complex inflammatory disease mediated by a multitude of proinflammatory leukocyte subsets. Using single photon emission computed tomography (SPECT) coupled with computed tomography (CT), this study tested a n ...
Single photon emission computed tomography (SPECT) is an important imaging modality for various applications in nuclear medicine. The use of multi-pinhole (MPH) collimators can provide superior resolution-sensitivity trade-off when imaging small field-of-view compared to conventi ...