Semiconducting van der Waals magnets exhibit a rich physical phenomenology with different collective excitations, as magnons or excitons, that can be coupled, thereby offering new opportunities for optoelectronic, spintronic, and magnonic devices. In contrast with the well-studie
...
Semiconducting van der Waals magnets exhibit a rich physical phenomenology with different collective excitations, as magnons or excitons, that can be coupled, thereby offering new opportunities for optoelectronic, spintronic, and magnonic devices. In contrast with the well-studied van der Waals magnets CrI3 or Fe3GeTe2, CrPS4 is a layered metamagnet with a high optical and magnon transport anisotropy. Here, the structural anisotropy of CrPS4 above and below the magnetic phase transition is investigated by fabricating nanomechanical resonators. A large anisotropy is observed in the resonance frequency of resonators oriented along the crystalline a- and b-axis, indicative of a lattice expansion along the b-axis, boosted at the magnetic phase transition, and a rather small continuous contraction along the a-axis. This behavior in the mechanical response differs from that previously reported in van der Waals magnets, as FePS3 or CoPS3, and can be understood from the quasi-1D nature of CrPS4. The results pinpoint CrPS4 as a promising material in the field of low-dimensional magnetism and show the potential of mechanical resonators for unraveling the in-plane structural anisotropy coupled to the magnetic ordering that, in a broader context, can be extended to studying structural modifications in other 2D materials and van der Waals heterostructures.
@en