HT

12 records found

Authored

This paper investigates the use of point wall pressure measurements for output feedback control of Tollmien–Schlichtingwaves in Falkner–Skan boundary layers.Anewapproach is presented for input–outputmodeling of the linear dynamics of the fluid system and the integration withH2∕Li ...
A compensator strategy based on the linearized Navier–Stokes equations, aimed to suppress Tollmien–Schlichting waves naturally occurring in low freestream turbulence conditions, is experimentally demonstrated. Experiments have been conducted on a flat-plate geometry under the inf ...
In existing modular adaptive control approaches, the effects of external disturbances such as atmospheric turbulence are often not considered. In real-life flight applications, stochastic atmospheric disturbances can severely degrade the performance of these approaches, resulting ...
Dynamical systems theory can significantly contribute to the understanding and control of fluid flows. Fluid dynamical systems are governed by the Navier-Stokes equations, which are continuous in both time and space, resulting in a state space of infinite dimension. To incorporat ...

Selective Frequency Damping (SFD) is a popular method for the computation of globally unstable steady-state solutions in fluid dynamics. The approach has two model parameters whose selection is generally unclear. In this article, a detailed analysis of the influence of these p ...

A new framework is presented for estimation and control of instabilities in wall-bounded shear flows described by the linearised Navier-Stokes equations. The control design considers the use of localised actuators/sensors to account for convective instabilities in an optimal cont ...
This paper presents a study on control of fluid flows using multivariate spline reduced order models. A new approach is presented for model reduction of the incompressible Navier-Stokes equations using multivariate splines defined on triangulations. State space descriptions are d ...
In this paper, a new modular adaptive control system is presented to compensate for aerodynamic uncertainties in high-performance flight control systems. This approach combines nonlinear dynamic inversion with multivariate spline-based adaptive control allocation. A new real-time ...
A new methodology is presented for model reduction of linear parabolic partial differential equations (PDEs) on general geometries using multivariate splines on triangulations. State-space descriptions are derived that can be used for control design. This method uses Galerkin pro ...

Contributed

One of the main goals of laminar flow control is to reduce skin-friction drag by delaying the onset of laminar to turbulent transition. Over unswept wings, the leading cause of this is the growth of flow instabilities called Tollmien-Schlichting(TS) waves. This thesis aims to tes ...