Cd

C.C. de Visser

189 records found

To improve the safety of commercial air transport, pilots are required to train on simulators to recognize the characteristics of an impending stall and subsequently correctly recover from it. To prevent negative training, it is important that the accuracy of the used simulation ...
One of the most widely applied identification methods for stall modeling using flight test data is based on Kirchhoff’s method of flow separation. However, this approach has not lead to a satisfactory aerodynamic pitching moment model. The introduction of the so-called X-variable ...
As quadrotors continue to become more popular for personal and commercial use, improving their safety is essential, especially in impaired operating states. With (asymmetric) blade damage(ABD) being a potentially dangerous type of impairment, it is beneficial to understand how it ...
Neglecting actuator dynamics in nonlinear control and control allocation can lead to performance degradation, especially when considering fast dynamic systems. This paper provides a novel method to account for actuator dynamics in the nonlinear control allocation solution: dynami ...
Aerodynamic stall has been a critical factor in recent aircraft crashes, leading to revised regulations for simulator-based stall prevention and recovery training. However, the updated regulations still lack an objectively defined level of accuracy for simulators' stall models th ...
Identifying individual control effectiveness parameters for aircraft with several distributed control surfaces can be efficiently performed using multisine inputs. While commonly used in flight testing, these inputs were used to identify control effectiveness models for the half ...
This paper presents a method for identifying flight dynamics models for aircraft that includes effects from the flexible structure and the effects from unsteady aerodynamics. In the time domain, the unsteady aerodynamic effects are often modelled using aerodynamic lag states. The ...
Online fault detection and diagnosis (FDD) enables Unmanned Aerial Vehicles (UAVs) to take informed decisions upon actuator failure during flight, adapting their control strategy or deploying emergency systems. Despite the camera being a ubiquitous sensor on-board of most comm ...
Accurate modeling of the unsteady aerodynamics during flow separation is critical for effective pilot stall training in Flight Simulation Training Devices and the development of automatic stall recovery controllers. Kirchhoff’s theory of flow separation has gained popularity due ...
Unmanned aerial vehicles (UAVs) are becoming an integral part of both industry and society. In particular, the quadrotor is now invaluable across a plethora of fields and recent developments, such as the inclusion of aerial manipulators, only extends their versatility. As UAVs be ...
Though control algorithms for multirotor Unmanned Air Vehicle (UAV) are well understood, the configuration, parameter estimation, and tuning of flight control algorithms takes quite some time and resources. In previous work, we have shown that it is possible to identify the contr ...
From fault-tolerant control to failure detection, blade damage simulation is integral for developing and testing failure-resilient modern unmanned aerial vehicles. Existing approaches assume partial loss of rotor effectiveness or reduce the problem to centrifugal forces resulting ...
Ensuring safety in autonomous systems is essential as they become more integrated with modern society. One way to accomplish this is to identify and maintain a safe operating space. To this end, much effort has been devoted in the field of reachability analysis to obtaining contr ...
This paper addresses the key question that when faults occur either the aircraft system dynamics changes due to the fault or these dynamics are unknown (precisely). This question is addressed for the important case of Air Data Sensor failures, due to e.g. icing, for fixed wing ai ...
Loss of control (LOC) is a prevalent cause of drone crashes. Onboard prevention systems should be designed requiring low computing power, for which data-driven techniques provide a promising solution. This study proposes the use of recurrent neural networks (RNNs) for LOC predict ...
In this paper, a new nonlinear control allocation method is presented for a distributed electric propulsion (DEP) aircraft. As the electric propellers can be used actively for control, in addition to the control surfaces, the DEP aircraft is over-actuated. This freedom in control ...
Aerodynamic model identification remains essential for simulator operations and control system design and operations. In this paper, state-of-the-art methodologies for aerodynamic model identification and validation are presented, together with a number of novel applications of t ...
This paper presents a novel method for fast and robust detection of actuator failures on quadrotors. The proposed algorithm has very little model dependency. A Kalman estimator estimates a stochastic effectiveness factor for every actuator, using only onboard RPM, gyro and accele ...
Ensuring the reliability and validity of data-driven quadrotor model predictions is essential for their accepted and practical use. This is especially true for grey- and black-box models wherein the mapping of inputs to predictions is not transparent and subsequent reliability no ...
This paper proposes an extension to the traditional flight path reconstruction filter to simultaneously reconstruct the aircraft rigid body states together with modal amplitudes and velocities of the structure. To achieve this, the filter makes use of additional accelerometers, g ...