XC

Xiaoping Chen

6 records found

Bubbles and slugs coexist in a fluidized bed with strong inter-particle forces. However, the effects bubbles and slugs impose over fluidizing stability, and chemical reaction efficiency are different. The present work distinguished bubbles and slugs with the aid of X-ray tomograp ...
The increase of inter-particle cohesive force greatly changes the fluidization dynamics, finally leading to the partial or complete failure of fluidization. However, few studies concern such transition process. This paper investigates the fluidization dynamics of Geldart B partic ...
Due to the presence of inter-particle cohesive force, cohesive particles reveal totally different fluidization behaviors as compared to the non-cohesive system. This paper studies the fluidization dynamics of Geldart B particles with varying thermal-induced cohesive forces. Multi ...
In many applications of fluidized reactors, the particles processed are cohesive. The presence of inter-particle cohesive force causes different fluidization dynamics compared to non-cohesive system. This paper studied the fluidization dynamics of cohesive Geldart B particles in ...
Nanoparticles form multi-stage agglomerates when they are fluidized: simple agglomerates (a few dozens of micrometres), and complex agglomerates (a few hundreds of micrometres). This paper studies nanoparticle fluidization by using adhesive CFD-DEM (Discrete Element Model) simula ...
Nanoparticles are fluidized as agglomerates with hierarchical fractal structures. In this study, we model nanoparticle fluidization by assuming the simple agglomerates as the discrete element in an adhesive (Computational Fluid Dynamics—Discrete Element Modelling) CFD-DEM model. ...