This paper presents a novel approach to data-driven time-dependent origin–destination (OD) estimation using a joint origin–destination-path choice formulation, inspired by the well-known equivalence of doubly constraint gravity models and multinomial logit models for joint O–D ch
...
This paper presents a novel approach to data-driven time-dependent origin–destination (OD) estimation using a joint origin–destination-path choice formulation, inspired by the well-known equivalence of doubly constraint gravity models and multinomial logit models for joint O–D choice. This new formulation provides a theoretical basis and generalizes an earlier contribution. Although including path choice increases the dimensionality of the problem, it also dramatically improves the quality of the data one can directly use to solve it (e.g. measured path travel times versus coarse centroid-to-centroid travel times); and opens up possibilities to combine different assimilation techniques in a single framework: (1) fast shortest path set computation using static (e.g. road type) and dynamic (speed, travel time) link properties; (2) predicting a “prior OD matrix” using the resulting path-shares and (estimated or measured) production and attraction totals; and (3) scaling/constraining this prior using link flows (informative of demand). If the resulting system of equations has insufficient rank, we use principal component analysis to reduce the dimensionality, solve this reduced problem, and transform that solution back to a full OD matrix. Comprehensive tests and sensitivity analysis on 7 networks with different sizes and characteristics give an empirical underpinning of the extended equivalence principle; demonstrate good accuracy and reliability of the OD estimation method overall; and suggest that the method is robust with respect to major assumptions and contributing factors.@en