JV
John Van Noort
6 records found
1
At the core of molecular biology lies the intricate interplay between sequence, structure, and function. Single-molecule techniques provide in-depth dynamic insights into structure and function, but laborious assays impede functional screening of large sequence libraries. We intr
...
Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with
...
Exploring molecular biology in sequence space
The road to next-generation single-molecule biophysics
Next-generation sequencing techniques have led to a new quantitative dimension in the biological sciences. In particular, integrating sequencing techniques with biophysical tools allows sequence-dependent mechanistic studies. Using the millions of DNA clusters that are generated
...
Torsional stress generated during DNA replication and transcription has been suggested to facilitate nucleosome unwrapping and thereby the progression of polymerases. However, the propagation of twist in condensed chromatin remains yet unresolved. Here, we measure how force and t
...
Magnetic tweezers form a unique tool to study the topology and mechanical properties of chromatin fibers. Chromatin is a complex of DNA and proteins that folds the DNA in such a way that meter-long stretches of DNA fit into the micron-sized cell nucleus. Moreover, it regulates ac
...
The eukaryotic genome is highly compacted into a protein-DNAcomplex called chromatin. The cell controls access of transcriptional regulators to chromosomal DNA via several mechanisms that act on chromatin-associated proteins and provide a rich spectrum of epigenetic regulation. E
...