Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates

More Info
expand_more

Abstract

Characterization of nonlinear behavior of micro-mechanical components in MEMS applications plays an important role in their design process. In this paper, nonlinear dynamics, stability and pull-in mechanisms of an electrically actuated circular micro-plate subjected to a differential pressure are studied. For this purpose, a reduced-order model based on an energy approach is formulated. It has been shown that nonlinear dynamics of an electrically actuated micro-plate, in the presence of differential pressure, significantly differs from those under purely electrostatic loads. The micro-plate may lose stability upon either saddle-node or period-doubling bifurcations. It has also been found that in the presence of a differential pressure, increasing the DC or AC voltages may surprisingly help to stabilize the motion of the micro-plate.