Determination of the intrinsic α/γ interface mobility during massive transformations in interstitial free Fe-X alloys
More Info
expand_more
Abstract
Kinetics of the austenite (γ) to ferrite (α) transformation and the reverse ferrite (α) to austenite (γ) transformation in a series of Fe-X (X = Ni, Mn and Co) binary alloys has been experimentally and theoretically investigated. A transition from partitioning to partitionless transformation has been predicted to occur during both the γ→α and α→γ transformations by a so called Gibbs Energy Balance (GEB) model, in which the chemical driving force is assumed to be equal to the energy dissipation due to interface friction and diffusion of X inside the migrating interfaces. The transition temperature is found to depend on the kind of X and its concentration, which is in good agreement with experimental results. The intrinsic mobility of the α/γ interface has been derived from the kinetic curves of both the γ→α and α→γ transformations in the investigated alloys, and its value seems to be marginally affected by the transformation direction and alloying elements.