CENP-B-mediated DNA loops regulate activity and stability of human centromeres

More Info
expand_more

Abstract

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.

Files

ViewPageProof_MOLCEL_8304.pdf
(pdf | 12.7 Mb)

Download not available

1_s2.0_S1097276522002064_main.... (pdf)
(pdf | 13.2 Mb)
- Embargo expired in 01-07-2023
Unknown license