Macroscopic Noisy Bounded Confidence Models with Distributed Radical Opinions

More Info
expand_more

Abstract

In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion profile. We establish mathematical properties of the FP equation. In particular, we, first, show the well-posedness of the dynamic equation, second, provide existence result accompanied by a quantitative global estimate for the corresponding stationary solution, and, third, establish an explicit lower bound on the noise level that guarantees exponential convergence of the dynamics to stationary state. Combining the results in second and third readily yields the input-output stability of the system for sufficiently large noises. Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is examined. The results of analysis are validated through several numerical simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent model (interacting stochastic differential equations) for a particular distribution of radicals.

Files

OpinDyn_AminKolarijani_TAC2020... (pdf)
(pdf | 0.996 Mb)
Unknown license

Download not available

Macroscopic_Noisy_Bounded_Conf... (pdf)
(pdf | 1.97 Mb)
- Embargo expired in 14-11-2020
Unknown license