Computational Study Of Diffuser Augmented Wind Turbine Using Actuator Disc Force Method
More Info
expand_more
expand_more
Abstract
In this paper, a computational approach, based on the solution of Reynolds-averaged-Navier–Stokes (RANS) equations, to describe the flow within and around a diffuser augmented wind turbine (DAWT) is reported. In order to reduce the computational cost, the turbine is modeled as an actuator disc (AD) that imposes a resistance to the passage of the flow. The effect of the AD is modeled applying two body forces, upstream and downstream of the AD, such that they impose a desired pressure jump. Comparison with experiments carried out in similar conditions shows a good agreement suggesting that the adopted methodology is able to carefully reproduce real flow features.