Effectiveness of spectral band selection/extraction techniques for spectral data

More Info
expand_more

Abstract

In the past few years a variety of successful algorithms to select/extract discriminative spectral bands was introduced. By exploiting the connectivity of neighbouring spectral bins, these techniques may be more beneficial than the standard feature selection/extraction methods applied for spectral classification. The goal of this paper is to study the effect of the training sample size on the performance of different strategies to select/extract informative spectral regions. We also consider the success of these methods compared to Principal Component Analysis (PCA) for different numbers of extracted components/groups of spectral bands.