Logical-qubit operations in an error-detecting surface code

More Info
expand_more

Abstract

Future fault-tolerant quantum computers will require storing and processing quantum data in logical qubits. Here we realize a suite of logical operations on a distance-2 surface code qubit built from seven physical qubits and stabilized using repeated error-detection cycles. Logical operations include initialization into arbitrary states, measurement in the cardinal bases of the Bloch sphere and a universal set of single-qubit gates. For each type of operation, we observe higher performance for fault-tolerant variants over non-fault-tolerant variants, and quantify the difference. In particular, we demonstrate process tomography of logical gates, using the notion of a logical Pauli transfer matrix. This integration of high-fidelity logical operations with a scalable scheme for repeated stabilization is a milestone on the road to quantum error correction with higher-distance superconducting surface codes.

Files

S41567_021_01423_9.pdf
(pdf | 2.92 Mb)
Unknown license

Download not available