Thermo-rheological and kinetic characterization and modeling of an epoxy vitrimer based on polyimine exchange
More Info
expand_more
Abstract
The present study describes the development of cure kinetics and chemo-rheological models for an epoxy vitrimer based on polyimine exchange to elucidate the potential in terms of processing and accurate process selection. Reaction kinetics is investigated using differential scanning calorimetry. A good agreement between the model and data can be demonstrated for different stoichiometries by selecting a parallel reaction approach consisting of an nth-order and an autocatalytic approach. The suggested chemo-rheological model captures the intrinsically high viscosity of the resin over a broad temperature and curing range, even after the gelation point. The Di-Benedetto equation represents the glass transition temperature advancement with cure while combining the rheological Winter-Chambon criterion and the kinetic model determines the degree of cure at the gelation. These results give important advice for improved process modeling of vitrimeric resins, facilitate accurate process selection, and pave the way towards the development of composites based on the matrix system investigated in this work.