On the origin of amplitude reduction mechanism in tapping mode atomic force microscopy
More Info
expand_more
Abstract
The origin of amplitude reduction in Tapping Mode Atomic Force Microscopy (TM-AFM) is typically attributed to the shift in resonance frequency of the cantilever due to the nonlinear tip-sample interactions. In this paper, we present a different insight into the same problem which, besides explaining the amplitude reduction mechanism, provides a simple reasoning for the relationship between tip-sample interactions and operation parameters (amplitude and frequency). The proposed formulation, which attributes the amplitude reduction to an interference between the tip-sample and dither force, only deals with the linear part of the system; however, it fully agrees with experimental results and numerical solutions of the full nonlinear model of TM-AFM.