Synthesis, optical characterization, and simulation of organo-metal halide perovskite materials

More Info
expand_more

Abstract

In recent years, the significant progress of organic-inorganic hybrid perovskite solar cells has surprised the photovoltaic community. Moreover, many other optoelectronic devices have been fabricated using this new generation of materials which makes it more attractive for researchers. Among different physical and chemical synthesis methods, we have taken on a two-step solution-based synthesis procedure to deposit CH3NH3PbI3 with 1.55 eV energy band gap in ambient air condition. Various optoelectrical characterization tools have been used to thoroughly investigate the perovskite film quality. Simulations were carried out using Finite-Difference Time-Domain method (FDTD) for studying light absorption mechanism in perovskite films. Various surface roughness amounts were applied to the simulations to achieve a good consistency between experimental and theoretical absorption curves. This approach can give an insight into how surface roughness effectively impacts on the optical characteristics of the synthesized layer. Moreover, light absorption mechanism has been also investigated which demonstrates how light with a wavelength of more than 540 nm can be transmitted from a 400 nm thick perovskite layer. Simulations also illustrate how surface roughness can help light trapping in the perovskite layer.

Files

1_s2.0_S0030402619307703_main.... (pdf)
(pdf | 3.8 Mb)
Unknown license

Download not available