Electric bus charging station location selection problem with slow and fast charging

More Info
expand_more

Abstract

To facilitate the shift from conventional to electric buses, the required charging infrastructure must be deployed. This study models the charging station location selection problem for fixed-line public transport services consisting of electric buses. The model considers the deadheading time of electric buses between the final stop of their trip and the locations of the potential charging stations with the objective of minimizing vehicle running costs. The problem is solved at a strategic level; therefore, several parameters of day-to-day operations, such as deadheading distances, are included as aggregate data considering their average values. In addition, it considers different charger types (slow and fast), which are subject to a day-ahead scheduling of the charging sessions of the buses. The developed model is a mixed-integer nonlinear program, which is reformulated as a mixed-integer linear program and can be solved efficiently for large networks with more than 1940 bus trips and 336 charging installation options. The model is applied in the Athens metropolitan area, demonstrating its potential as a decision support tool for selecting charging station locations and charger types in large public transport networks.

Files

1-s2.0-S0306261924026266-main.... (pdf)
(pdf | 4.41 Mb)
Unknown license
warning

File under embargo until 08-07-2025