Hydrogen carriers for zero-emission ship propulsion using PEM fuel cells

an evaluation

More Info
expand_more

Abstract

Green hydrogen combined with PEM fuel cell systems is a viable option to meet the demand for alternative maritime fuels. However, hydrogen storage faces challenges, including low volumetric density, fire and explosion risks and transport challenges. We assessed over fifteen hydrogen carriers based on their maritime performance characteristics to determine their suitability for shipboard use. Evaluation criteria included energy density, locally zero-emission, circularity of process, safety, dehydrogenation process, logistic availability and handling. Thus, excluding ammonia and methanol because of these constraints, we found that borohydrides, liquid organic hydrogen carriers and ammoniaborane are the most promising hydrogen carriers to use on ships with PEM fuel cells. Borohydrides, specifically sodium borohydride, have high energy densities but face regeneration issues. The liquid organic hydrogen carrier dibenzyltoluene has a lower energy density but exhibits easy hydrogenation and good handling. Given varying operational demands, we developed a framework to assess the suitability of hydrogen carriers for use in different ship categories. Evaluating the three types of hydrogen carriers, using our framework and considering current practices, shows that these are viable options for almost all ship types. Thus, we have identified three types of hydrogen carriers, which should be the focus of future research.