Aerodynamic Performance Benefits of Over-the-Wing Distributed Propulsion for Hybrid-Electric Transport Aircraft
More Info
expand_more
Abstract
The goal of this study is to analyze how the aeropropulsive benefits of an over-the-wing distributed-propulsion (OTWDP) system at the component level translate into an aeropropulsive benefit at the aircraft level, as well as to determine whether this enhancement is sufficient to lead to a reduction in overall energy consumption. For this, the preliminary sizing of a partial-turboelectric regional passenger aircraft is performed, and its performance metrics are compared to a conventional twin-turboprop reference for the 2035 timeframe. The changes in lift, drag, and propulsive efficiency due to the OTWDP system are estimated for a simplified unducted geometry using a lowerorder numerical method, which is validated with experimental data. For a typical cruise condition and the baseline geometry evaluated in the experiment, the numerical method estimates a 45% increase in the local sectional lift-todrag ratio of the wing, at the expense of a 12% reduction in propeller efficiency. For an aircraft with 53% of the wingspan covered by the OTWDP system, this aerodynamic coupling is found to increase the average aeropropulsive efficiency of the aircraft by 9% for a 1500 n mile mission. Approximately 4% of this benefit is required to offset the losses in the electrical drivetrain. The reduction in fuel weight compensates for the increase in powertrain weight, leading to a takeoff mass comparable to the reference aircraft. Overall, a 5% reduction in energy consumption is found, albeit with a 5% uncertainty due to uncertainty in the aerodynamic modeling alone.