Thickness optimization algorithm to improve multilayer diffractive optical elements performance
More Info
expand_more
Abstract
The diffractive zone thicknesses of conventional diffractive optical elements (DOEs) are generally obtained using the thin element approximation (TEA). However, the TEA yields inaccurate results in the case of thick multilayer DOEs (MLDOEs). The extended scalar theory (EST) is an alternative thickness optimization method that depends on the diffractive order and the optimization wavelength. We developed an algorithm to research suitable EST input parameters. It combines ray-tracing and Fourier optics to provide a performance estimate for each EST parameter pair. The resulting “best”MLDOEdesigns for three different material combinations are analyzed using rigorous finite-difference time-domain. Compared to the TEA, the proposed algorithm can provide performing zone thicknesses.