Towards Additive Manufactured Off-Earth Habitats with Functionally Graded Multi-Materials

More Info
expand_more

Abstract

This study investigated the feasibility of in-situ manufacturing of a functionally graded metallic-regolith multimaterial. To fabricate the gradient, digital light processing, an additive manufacturing technique, and spark plasma sintering were selected due to their compatibility with metallic-ceramic processing in a space environment. The chosen methods were initially assessed for their ability to effectively consolidate regolith alone, before progressing to sintering regolith directly onto metallic substrates. Optimised processing conditions based on the initial powder particle size, different compositions of the lunar regolith powders and sintering temperatures were identified. Experiments have successfully proven the consolidation of lunar regolith simulants first via near-net shaping with digital light processing and then spark plasma sintering at 1050 ℃ under 80 MPa. The metallic powders were fully densified at relatively low temperatures and a pressure of 50 MPa with spark plasma sintering. Furthermore, the lunar regolith and Ti6Al4V gradient were found to be the most promising multimaterial combination. While the current study showed that it is feasible to manufacture a functionally graded metallic-regolith, further developments of a fully optimised method have the potential to produce tailored, high-performance multimaterials in an off-earth manufacturing setting for the production of aerospace, robotic, or architectural components.

Files

978-3-031-50081-7_4.pdf
(pdf | 1.48 Mb)
- Embargo expired in 11-10-2024
Unknown license