Exact nonlinear model reduction for a von Kármán beam
Slow-fast decomposition and spectral submanifolds
More Info
expand_more
Abstract
We apply two recently formulated mathematical techniques, Slow-Fast Decomposition (SFD) and Spectral Submanifold (SSM) reduction, to a von Kármán beam with geometric nonlinearities and viscoelastic damping. SFD identifies a global slow manifold in the full system which attracts solutions at rates faster than typical rates within the manifold. An SSM, the smoothest nonlinear continuation of a linear modal subspace, is then used to further reduce the beam equations within the slow manifold. This two-stage, mathematically exact procedure results in a drastic reduction of the finite-element beam model to a one-degree-of freedom nonlinear oscillator. We also introduce the technique of spectral quotient analysis, which gives the number of modes relevant for reduction as output rather than input to the reduction process.