Adaptive dynamic incremental nonlinear control allocation
An actuator fault-tolerant control solution for high-performance aircraft
More Info
expand_more
Abstract
Neglecting actuator dynamics in nonlinear control and control allocation can lead to performance degradation, especially when considering fast dynamic systems. This thesis provides a novel method to account for actuator dynamics in the control allocation solution, dynamic incremental nonlinear control allocation, or D-INCA. The incremental approach allows for the implementation of a first order discrete-time actuator dynamics model in the quadratic programming (QP) solver. This model is used to find the optimal command inputs in addition to the desired physical actuator deflections, hereby compensating for actuator dynamics delays. Whereas, the baseline incremental nonlinear control allocation (INCA) approach requires pseudo-control hedging of the outer loop reference to increase closed loop stability margins under actuator dynamics delays. To its advantage, D-INCA does not require feedback of higher order output derivatives than INCA and can be used with nonlinear non-control affine systems. Furthermore, with adaptive D-INCA, or AD-INCA, an actuator dynamics parameter estimator is introduced to adapt the actuator model online, minimizing actuator tracking errors after actuator failures. The proposed methods are applied to a fighter aircraft model with an over-actuated innovative control effectors suite and results are compared to the baseline INCA controller.
Files
File under embargo until 01-06-2025