Noise fit, estimation error and a Sharpe information criterion

More Info
expand_more

Abstract

When the in-sample Sharpe ratio is obtained by optimizing over a k-dimensional parameter space, it is a biased estimator for what can be expected on unseen data (out-of-sample). We derive (1) an unbiased estimator adjusting for both sources of bias: noise fit and estimation error. We then show (2) how to use the adjusted Sharpe ratio as model selection criterion analogously to the Akaike Information Criterion (AIC). Selecting a model with the highest adjusted Sharpe ratio selects the model with the highest estimated out-of-sample Sharpe ratio in the same way as selection by AIC does for the log-likelihood as a measure of fit.

Files

Noise_fit_estimation_error_and... (pdf)
(pdf | 1.92 Mb)
Unknown license

Download not available