Highly sensitive silicon Mach-Zehnder interferometer-based ultrasound sensor
More Info
expand_more
Abstract
We report a highly sensitive ultrasound sensor based on an integrated photonics silicon Mach-Zehnder interferometer (MZI). One arm of the MZI is located on a thin membrane, acting as the sensing part of the device. Ultrasound waves excite the membrane's vibrational mode, thus inducing modulation of the MZI transmission. The measured sensor transfer function is centered at 0.47 MHz and has a -6 dB bandwidth of 21.2%. For 1.0 mW optical input power, we obtain a high sensitivity of 0.62 mV/Pa, a low detection limit of 0.38 mPa/Hz1/2 at the resonance frequency and a large dynamic range of 59 dB. In preliminary ultrasound imaging experiments using this sensor, an image of a wire phantom is obtained. The properties of this sensor and the generated image show that this sensor is very promising for ultrasound imaging applications.