Recurrent knowledge graph embedding for effective recommendation
More Info
expand_more
Abstract
Knowledge graphs (KGs) have proven to be effective to improve recommendation. Existing methods mainly rely on hand-engineered features from KGs (e.g., meta paths), which requires domain knowledge. This paper presents RKGE, a KG embedding approach that automatically learns semantic representations of both entities and paths between entities for characterizing user preferences towards items. Specifically, RKGE employs a novel recurrent network architecture that contains a batch of recurrent networks to model the semantics of paths linking a same entity pair, which are seamlessly fused into recommendation. It further employs a pooling operator to discriminate the saliency of different paths in characterizing user preferences towards items. Extensive validation on real-world datasets shows the superiority of RKGE against state-of-the-art methods. Furthermore, we show that RKGE provides meaningful explanations for recommendation results.