Parameter-dependent fractional boundary value problems

analysis and approximation of solutions

More Info
expand_more

Abstract

We study a parameter-dependent non-linear fractional differential equation, subject to Dirichlet boundary conditions. Using the fixed point theory, we restrict the parameter values to secure the existence and uniqueness of solutions, and analyse the monotonicity behaviour of the solutions. Additionally, we apply a numerical-analytic technique, coupled with the lower and upper solutions method, to construct a sequence of approximations to the boundary value problem and give conditions for its monotonicity. The theoretical results are confirmed by an example of the Antarctic Circumpolar Current equation in the fractional setting.