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ABSTRACT
We study a parameter-dependent non-linear fractional differential
equation, subject to Dirichlet boundary conditions. Using the fixed point
theory, we restrict the parameter values to secure the existence and
uniqueness of solutions, and analyse the monotonicity behaviour of the
solutions. Additionally, we apply a numerical-analytic technique, coupled
with the lower and upper solutions method, to construct a sequence of
approximations to the boundary value problem and give conditions for its
monotonicity. The theoretical results are confirmed by an example of the
Antarctic Circumpolar Current equation in the fractional setting.
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1. Introduction

Fractional boundary value problems (FBVPs) have gained considerable popularity due to recent
developments in the theory of fractional calculus, as well as their wide range of applications in math-
ematics, engineering and the natural sciences. Fractional operators give models an extra degree of
freedom in the form of the fractional derivative order, and are able to capture memory and non-local
effects, which are exhibited bymany processes, see [1–5] and the references therein. Some applications
of fractional differential equations (FDEs) include viscoelasticity [6, 7], porousmedia flow [8–10] and
anomalous diffusion [11, 12].

Modelling complex real-world phenomena requires the use of non-linear FDEs, whose exact solu-
tions are unavailable, which has prompted the development of approximation techniques. One such
technique is themonotone iterativemethod, which has been combinedwith the lower and upper solu-
tionsmethod to establish the existence and uniqueness of solutions for fractional initial and boundary
value problems, and to construct monotone sequences of approximations to their solutions [13–16].
Another method for approximating solutions of FBVPs is the numerical-analytic technique, which
has been applied to FDEs, subject to various boundary conditions [17–20]. In this work, we show
how combining the numerical-analytic technique with the lower and upper solutions method can
improve the efficiency of the former.

We consider a parameter-dependent non-linear FDE of the Caputo type, subject to Dirichlet
boundary conditions, where the parameter value controls the effect of the non-linear term and deter-
mines themonotonicity of the right-hand side function in the equation. The present paper consists of
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six sections. Section 2 contains the definitions and preliminary results, which will be used throughout
the paper. In Section 3 we apply fixed point theory to determine the range of parameter values, which
guarantees the existence and uniqueness of solutions to the studied problem. A sequence of approxi-
mate solutions is constructed using the numerical-analytic technique and its monotonicity behaviour
is analysed. In particular, we show that for an FDE with a decreasing right-hand side function, the
numerical-analytic technique produces a monotone sequence. In Section 4 we apply the lower and
upper solutions method to the case when the right-hand side function is increasing to construct an
alternating sequence of approximations. We demonstrate how the lower and upper solutions method
can be used in this case to simplify the form of the sequence, resulting from the numerical-analytic
technique and to thereby reduce the computational time. Our results are applied to a fractional order
problem, which in the case of the second derivative models the Antarctic Circumpolar Current in
Section 5. Section 6 presents a summary of our conclusions.

2. Definitions and auxiliary statements

Throughout this paper we use the following definitions and preliminary results:

Definition 2.1: Let n−1< p<n for some n ∈ Z+. Then the Riemann–Liouville fractional integral
of order p is given by (see [1], Def. 2.88)

aI
p
t f (t) :=

1
�(p)

∫ t

a
(t − s)p−1f (s) ds.

Definition 2.2: Let n−1< p<n for some n ∈ Z+ and f (t) : (0,∞) → R. Then the left Caputo
fractional derivative of f (t) of order p is given by

C
a D

p
t f (t) :=

1
�(n − p)

∫ t

a
(t − s)n−p−1f (n)(s) ds. (1)

When p = n, (1) reduces to the ordinary derivative of order n (see [1], Def. 2.138). When p ∈ (1, 2),
as in (6), the Caputo derivative reads

C
a D

p
t f (t) :=

1
�(2 − p)

∫ t

a
(t − s)1−pf

′′
(s) ds.

The following Lemma gives the relationship between the Caputo fractional derivative and the
fractional integral.

Lemma 2.1 ([2]): (i) Let p ∈ (n − 1, n), f (t) ∈ L∞(0, b) or f (t) ∈ C[0, b]. Then

(Ca D
p
t aI

p
t )f (t) = f (t).

(ii) Let p ∈ (n − 1, n), f (t) ∈ ACn[0, b] or f (t) ∈ Cn[0, b]. Then

(aI
p
t
C
a D

p
t )f (t) = f (t) −

n−1∑
k=0

f (k)(0)
k!

tk.
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Lemma 2.2 ([18]): If f (t) is a continuous function on t ∈ [a, b], then the following estimate

1
�(p)

∣∣∣∣∣
∫ t

a
(t − s)p−1f (s) ds −

(
t − a
b − a

)p ∫ b

a
(b − s)p−1f (s) ds

∣∣∣∣∣
≤ α1(t) max

a≤t≤b
|f (t)|

(2)

holds for all t ∈ [a, b], where

α1(t) := 2(t − a)p

�(p + 1)

(
b − t
b − a

)p
.

Lemma 2.3 ([18]): Let {αn(·)}n≥1 be a sequence of continuous functions on t ∈ [a, b], given by

αn(t) := 1
�(p)

[∫ t

a

[
(t − s)p−1 −

(
t − a
b − a

)p
(b − s)p−1

]
αn−1(s) ds

+
(
t − a
b − a

)p ∫ b

t
(b − s)p−1αn−1(s) ds

]
,

where

α0(t) := 1,

α1(t) := 2(t − a)p

�(p + 1)

(
b − t
b − a

)p
.

Then the estimate

αn+1(t) ≤ (b − a)npα1(t)
2[n(2p−1)][�(p + 1)]n

≤ (b − a)(n+1)p

2[(n+1)(2p−1)][�(p + 1)]n+1 (3)

holds for n ∈ Z
+
0 .

For the proofs of Lemmas 2.2 and 2.3 we refer to [18].
Consider a FBVP of the form

C
0D

p
t u(t) = f (t, u(t)), t ∈ [0, 1],

u(0) = α0, u(1) = α1,
(4)

where p ∈ (1, 2], u(t) : [0, 1] → D ⊂ R, f (t, u(t)) : [0, 1] × D → R.

Definition 2.3 ([13]): A function v(t) ∈ C2([0, 1],R) is called a lower solution of the BVP (4) of type
I if it satisfies

C
0D

p
t v(t) > f (t, v(t)), t ∈ [0, 1],

v(0) ≤ α0, v(1) ≤ α1.

If a function w(t) ∈ C2([0, 1],R) satisfies the reversed inequalities, it is called an upper solution of
the BVP (4) of type I.
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Definition 2.4 ([14]): A function v(t) ∈ C2([0, 1],R) is called a lower solution of the BVP (4) of type
II if it satisfies

C
0D

p
t v(t) < f (t, u(t)), t ∈ [0, 1],

v(0) ≤ α0, v(1) ≤ α1.

If a function w(t) ∈ C2([0, 1],R) satisfies the reversed inequalities, it is called an upper solution of
the BVP (4) of type II.

Lemma2.4 ([13], Positivity Result): Let z(t) ∈ C2([0, 1],R) and r(t) < 0, t ∈ [0, 1], bounded. If z(t)
satisfies the inequality

C
0D

p
t z(t) + r(t)z(t) ≤ 0, t ∈ (0, 1),

z(0), z(1) ≥ 0,

then z(t) ≥ 0,∀t ∈ [0, 1].

Lemma 2.5: Let z(t) ∈ C2([0, 1],R). If z(t) satisfies conditions

C
0D

p
t z(t) > 0, t ∈ (0, 1),

z(0), z(1) ≤ 0,
(5)

then z(t) < 0 for t ∈ (0, 1).

Proof: Let z(t) ∈ C2([0, 1],R) be such that it satisfies (5), and assume for the sake of contradiction
that z(t) ≥ 0 for (at least one) t ∈ (0, 1). Then z(t) attains a local maximum at some t0 ∈ (0, 1), thus
the Caputo derivative of z(t) is non-positive at t0, i.e. C0D

p
t z(t0) ≤ 0, by Theorem 2.1 in [15]. This is

in contradiction with (5), thus, z(t) < 0 for t ∈ [0, 1]. �

3. Analysis of the parameter-dependent FBVP

In this section we present the general form of the FBVP under consideration. We give sufficient
conditions on the right-hand side function for the existence and uniqueness of solutions to the stud-
ied problem and apply the numerical-analytic technique to construct a sequence of approximate
solutions. Moreover, we analyse the monotonicity behaviour of the resulting sequence.

3.1. Problem setting and solvability analysis

We consider a parameter-dependent Caputo FBVP of the form

C
0D

p
t u(t) + λa(t)F(u(t)) = b(t), t ∈ [0, 1],

u(0) = α0,

u(1) = α1,

(6)

where p ∈ (1, 2], λ ∈ R, u : [0, 1] → D ⊂ R, u ∈ C2([0, 1],R), and D is a closed and bounded
domain. The right-hand side parameter λ and functions a(t) and b(t) are such that

|λ| := �,

A := sup
t∈[0,1]

|a(t)|,

B := sup
t∈[0,1]

|b(t)|.
(7)
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We assume that function F(u(t)) : [0, 1] × D → R is (generally) non-linear, bounded and Lipschitz
continuous, i.e.

|F(u(t))| ≤ M,

|F(u1(t)) − F(u2(t))| ≤ K|u1(t) − u2(t)|
(8)

hold for all t ∈ [0, 1], u1(t), u2(t) ∈ D, whereM, K ∈ R are constants.
We aim to determine the values of the right-hand side parameter λ for which there exists a unique

solution to FBVP (6). In addition, we analyse the monotonicity behaviour of the solution and con-
struct a sequence of approximations using the numerical-analytic technique and the lower and upper
solutions method.

Note that FBVP (6) is equivalent to the following integral equation:

u(t, λ;χ) = α0 + χ t + tp (α1 − α0 − χ)

+ 1
�(p)

[∫ t

0
(t − s)p−1[−λa(s)F(u(s, λ;χ)) + b(s)] ds

−tp
∫ 1

0
(1 − s)p−1[−λa(s)F(u(s, λ;χ)) + b(s)] ds

]
, (9)

where χ := u′(0), see [21] for details.
Denote the operator associated with (9) byH:

(Hu)(t) := α0 + χ t + tp (α1 − α0 − χ)

+ 1
�(p)

[∫ t

0
(t − s)p−1[−λa(s)F(u(s, λ;χ)) + b(s)] ds

−tp
∫ 1

0
(1 − s)p−1[−λa(s)F(u(s, λ;χ)) + b(s)] ds

]
.

In the following theorem we give conditions on the parameter λ, for which the integral equation (9)
has a unique solution.

Theorem 3.1: If u ∈ Br, where Br := {u ∈ C2([0, 1],R) : |u(t)| ≤ r} with

r >
22p−1�(p + 1)U + �AN + B

22p−1�(p + 1) − �AK
,

U := max
0≤t≤ 1

∣∣α0 + χ t + tp (α1 − α0 − χ)
∣∣ ,

N := sup
t∈[0,1]

|F(0)|,

and � satisfies the following inequality

� <
22p−1�(p + 1)

AK
, (10)

then H is a contraction operator, and therefore, the integral equation (9) has a unique solution in
C2([0, 1]).
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Proof: From the Lipschitz condition (8) it follows that

|F(u(t))| = |F(u(t)) + F(0) − F(0)|
≤ K|u(t)| + |F(0)| ≤ K|u(t)| + N.

For u ∈ Br we have

|(Hu)(t)| ≤ ∣∣α0 + χ t + tp (α1 − α0 − χ)
∣∣

+ 1
�(p)

∣∣∣∣
∫ t

0
(t − s)p−1[−λa(s)F(u(s, λ;χ))] ds

−tp
∫ 1

0
(1 − s)p−1[−λa(s)F(u(s, λ,χ)) ds

∣∣∣∣
+ 1

�(p)

∣∣∣∣
∫ t

0
(t − s)p−1b(s) ds − tp

∫ 1

0
(1 − s)p−1b(s) ds

∣∣∣∣ .
Using inequality (2) from Lemma 2.2 yields

|(Hu)(t)| ≤ U + α1(t) max
0≤t≤1

| − λa(t)F(u(t, λ;χ))| + α1(t) max
0≤t≤1

|b(t)|

≤ U + (�A max
0≤t≤1

|F(u(t, λ,χ))| + B)α1(t)

≤ U + [�A(K|u(t)| + N) + B]α1(t)

≤ U + [�A(Kr + N) + B]α1(t).

Applying estimate (3) in Lemma 2.3 with n = 0 yields

|(Hu)(t)| ≤ U + [�A(Kr + N) + B]α1(t)

≤ U + �A(Kr + N) + B
22p−1�(p + 1)

≤ r,

i.e. if u ∈ Br , thenHu ⊂ Br .
Now we consider u, v ∈ C2([0, 1],R) and apply estimate (2) again:

|(Hu)(t) − (Hv)(t)| = 1
�(p)

∣∣∣ ∫ t

0
(t − s)p−1(−λa(s))[F(u(s, λ;χ)) − F(v(s, λ; chi))] ds

− tp
∫ 1

0
(1 − s)p−1[−λa(s)F(u(s, λ;χ)) − F(v(s, λ;χ))] ds

∣∣∣
≤ α1(t) max

0≤t≤1
| − λa(s)[F(u(s, λ;χ)) − F(v(s, λ;χ))]|

≤ α1(t)�AK max
0≤t≤1

|u(s, λ;χ) − v(s, λ;χ)|

≤ �AK
22p−1�(p + 1)

||u − v||

=⇒ ||Hu − Hv|| ≤ �AK
22p−1�(p + 1)

||u − v|| ≤ ||u − v||.

From (10) it follows that

�
AK

22p−1�(p + 1)
<

22p−1�(p + 1)
AK

AK
22p−1�(p + 1)

< 1,
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i.e. H is a contraction. Therefore, by the Banach fixed point theorem, (9) has a unique solution in
C2([0, 1]). �

3.2. Successive approximationsmethod

The integral representation of the exact solution of FBVP (6) is given in (9), however, a difficulty
of its application arises, since the quantity under the integral depends on u(t, λ;χ), whose explicit
form is unknown. To overcome this, we construct a sequence of approximations, which converges
uniformly to the exact solution.We set the value of the right-hand side parameter to λ = λ̄, such that
condition (10) is satisfied, and associate with BVP (6) the following sequence

u0(t, λ̄;χ) = α0 + χ t + tp (α1 − α0 − χ)

un(t, λ̄;χ) = u0(t, λ̄;χ) + 1
�(p)

[∫ t

0
(t − s)p−1[−λ̄a(s)F(un−1(s, λ̄;χ)) + b(s)] ds

−tp
∫ 1

0
(1 − s)p−1[−λ̄a(s)F(un−1(s, λ̄;χ)) + b(s)] ds

]
, (11)

n ∈ N, t ∈ [0, 1].
Additionally, we assume that the set

Dβ := {α0 ∈ D : B(α0 + χ t + tp (α1 − α0 − χ) ,β) ⊂ D},
is non-empty, where

β = λ̄AM + B
22p−1�(p + 1)

. (12)

Then the following theorem holds.

Theorem 3.2: Provided that for all χ ∈ � and t ∈ [0, 1] conditions (10) and (12) are satisfied,

(1) The terms of the sequence (11) are continuous and satisfy boundary conditions

un(0, λ̄,χ) = α0,

un(1, λ̄,χ) = α1

for n ∈ N.
(2) The sequence (11) converges uniformly to the limit function

u∞(t, λ̄;χ) = lim
n→∞ un(t, λ̄;χ). (13)

(3) The limit function (13) satisfies boundary conditions u∞(0, λ̄;χ) = α0, u∞(1, λ̄;χ) = α.
(4) The limit function (13) is the unique solution to the integral equation (9)

u(t, λ̄;χ) = α0 + χ t + tp (α1 − α0 − χ)

+ 1
�(p)

[∫ t

0
(t − s)p−1[−λ̄a(s)F(u(s, λ̄;χ)) + b(s)] ds

−tp
∫ 1

0
(1 − s)p−1[−λ̄a(s)F(u(s, λ̄;χ)) + b(s)] ds

]
, (14)
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i.e. it is the unique solution to the perturbed Cauchy problem

C
0D

p
t u(t) = −λ̄a(t)F(u(t)) + b(t) + 	(χ), p ∈ (1, 2],

u(0) = α0,

u′(0) = χ ,

(15)

where 	 : � → R is a mapping defined by

	(χ) := �(p + 1)(α1 − α0 − χ) − p
∫ 1

0
(1 − s)p−1[λ̄a(s)F(u(s, λ̄;χ)) + b(s)] ds. (16)

(5) The following error estimate holds

|u∞(t, λ̄;χ) − un(t, λ̄;χ)| ≤ Qn(λ̄AM + B)

22p−1�(p + 1)
1

1 − Q
, (17)

where

Q := λ̄AK
22p−1�(p + 1)

,

and A, K are defined in (7) and (8).

To establish the connection between the solution to the IVP (15) and the original BVP (6), consider
the Cauchy problem

C
0D

p
t u(t) = f (t, u(t)) + μ, t ∈ [0,T],

u(0) = α0,

u′(0) = χ ,

(18)

where μ ∈ R we will call a control parameter, α0 ∈ Dβ and χ ∈ �.

Theorem 3.3: Let χ ∈ �, μ ∈ R be given. Assume that all conditions of Theorem 3.2 are satisfied for
the FBVP (6). Then the solution u = u(·, λ̄;χ ,μ) of the IVP (18) also satisfies the boundary conditions
in (6) if and only if

μ = 	(χ),

where 	(χ) is given by (16), and in this case

u(t, λ̄;χ ,μ) = u∞(t, λ̄;χ) for t ∈ [0, 1].

Theorem 3.4: Let the original BVP (6) satisfy conditions (12) and (10). Then u∞(·, λ̄;χ∗) is a solution
to the BVP (6) if and only if the point χ∗ is a solution to the determining equation

	(χ∗) = 0,

where 	 is given by (16).

For the proofs of Theorems 3.2 – 3.4 in the case of a parameter-independent FBVPwe refer to [21].
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Remark 3.1: Since the explicit form of the solution u(t, λ̄;χ) is unknown, in practice, we compute
the values of the parameter χ by solving the approximate determining equation

	(χn) = 0, (19)

where

	(χn) := �(p + 1)(α1 − α0 − χn)

− p
∫ 1

0
(1 − s)p−1[λ̄a(s)F(un(s, λ̄;χn)) + b(s)] ds

at each iteration step n.

3.3. Monotonicity of the approximating sequence

Let us denote the right-hand side function in the BVP (6) by f (t, u(t, λ̄;χ); λ̄) := −λ̄a(t)F(u(t, λ̄;χ))
+ b(t). The following two theorems give conditions for which the terms in (11) form a monotone or
an alternating sequence respectively.

Theorem 3.5: Consider the BVP (6) and the sequence of approximations (11), and assume that
f (t, u(t, λ̄;χ); λ̄) is strictly decreasing in u(t, λ̄;χ), i.e.

∂f
∂u

< 0.

Then the following statements hold:

(S1) If the initial approximation u0(t, λ̄;χ) is such that u0(t, λ̄;χ) < u1(t, λ̄;χ), then the sequence
un(t, λ̄;χ) is well-ordered and increasing, i.e.

uk−1(t, λ̄;χ) < uk(t, λ̄;χ), ∀ k ∈ N.

(S2) If the initial approximation u0(t, λ̄;χ) is such that u1(t, λ̄;χ) < u0(t, λ̄;χ), then the sequence
un(t, λ̄;χ) is well-ordered and decreasing, i.e.

uk(t, λ̄;χ) < uk−1(t, λ̄;χ), ∀ k ∈ N.

Proof: The terms in the approximating sequence are obtained from the scheme
C
0D

p
t un(t, λ̄;χ) = f (t, un−1(t, λ̄;χ)),

un(0) = u(0), un(1) = u(1), n ≥ 1.

(S1) Assume that u0(t, λ̄;χ) < u1(t, λ̄;χ). Then
C
0D

p
t [u1(t, λ̄;χ) − u2(t, λ̄;χ)] = f (t, u0(t, λ̄;χ); λ̄) − f (t, u1(t, λ̄;χ); λ̄) > 0,

u1(0, λ̄;χ) − u2(0, λ̄;χ) = 0,

u1(1, λ̄;χ) − u2(1, λ̄;χ) = 0,

hence, by Lemma 2.5, u1(t, λ̄;χ) < u2(t, λ̄;χ). Assume the statement holds for n = k. Then, for n =
k + 1 we have

C
0D

p
t [uk(t, λ̄;χ) − uk+1(t, λ̄;χ)] = f (t, uk−1(t, λ̄;χ); λ̄) − f (t, uk(t, λ̄;χ); λ̄) > 0,

uk(0, λ̄;χ) − uk+1(0, λ̄;χ) = 0,

uk(1, λ̄;χ) − uk+1(1, λ̄;χ) = 0,
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hence, by Lemma 2.2, uk(t, λ̄;χ) < uk+1(t, λ̄;χ). Therefore, the sequence un(t, λ̄;χ) is monotone
and increasing.

The proof of (S2) follows the lines of the proof of (S1). �

Theorem 3.6: Consider the BVP (6), and the sequence of approximations (11), and assume that
f (t, u(t, λ̄;χ); λ̄) is strictly increasing in u(t, λ̄;χ), i.e.

∂f
∂u

> 0.

Then the following statements hold:

(S1) If the initial approximation u0(t, λ̄;χ) is such that u1(t, λ̄;χ) < u0(t, λ̄;χ), then the terms
un(t, λ̄;χ), given by (11), form an alternating sequence, for which

u1(t, λ̄;χ) < · · · < u2n+1(t, λ̄;χ) < u2n(t, λ̄;χ) < · · · < u0(t, λ̄;χ). (20)

(S1) If the initial approximation u0(t, λ̄;χ) is such that u0(t, λ̄;χ) < u1(t, λ̄;χ), then the terms
un(t, λ̄;χ), given by (11), form an alternating sequence, for which

u0(t, λ̄;χ) < · · · < u2n(t, λ̄;χ) < u2n+1(t, λ̄;χ) < · · · < u1(t, λ̄;χ). (21)

Proof: (S1) Assume that u1(t, λ̄;χ) < u0(t, λ̄;χ). Then

C
0D

p
t [u1(t, λ̄;χ) − u2(t, λ̄;χ)] = f (t, u0(t, λ̄;χ); λ̄) − f (t, u1(t, λ̄;χ); λ̄) > 0,

u1(0, λ̄;χ) − u2(0, λ̄;χ) = 0,

u1(1, λ̄;χ) − u2(1, λ̄;χ) = 0,

hence, by Lemma 2.5, u1(t, λ̄;χ) < u2(t, λ̄;χ). Assume the statement holds for n = k, that is,
u2k+1(t, λ̄;χ) < u2k(t, λ̄;χ) Then, for n = k+ 1 we have

C
0D

p
t [u2k+1(t, λ̄;χ) − u2(k+1)(t, λ̄;χ)] = f (t, u2k(t, λ̄;χ); λ̄) − f (t, u2k+1(t, λ̄;χ); λ̄) > 0,

u2k+1(0, λ̄;χ) − u2(k+1)(0, λ̄;χ) = 0,

u2k+1(1, λ̄;χ) − u2(k+1)(1, λ̄;χ) = 0,

hence, by Lemma 2.5, u2k+1(t, λ̄;χ) < u2(k+1)(t, λ̄;χ). Thus,

C
0D

p
t [u2k+3(t) − u2(k+1)(t)] = f (t, u2(k+1)(t, λ̄;χ); λ̄) − f (t, u2k+1(t, λ̄;χ); λ̄) > 0,

(u2k+3 − u2(k+1))(0) = 0,

(u2k+3 − u2(k+1))(1) = 0,

which implies u2k+3(t, λ̄;χ) < u2(k+1)(t, λ̄;χ), that is, the statement holds for n = k+ 1. Therefore,
the sequence un(t, λ̄;χ) is alternating, i.e. (20) holds.

The proof of (2) follows the lines of the proof of (1). �

4. Lower and upper solutions method

In this section, we describe how the lower/upper solutions method can be combined with the
numerical-analytic technique, presented in Section 3, to construct approximating sequences to the
solution of BVP (6).
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The following two theorems give the form of the alternating sequence, resulting from combining
the numerical-analytic technique with the lower and upper solutions method, depending on how the
lower and upper solutions are chosen.

Theorem 4.1: Consider the BVP (6). Assume that

(i) v0, w0 ∈ C2([0, 1],R) are lower and upper solutions to the BVP (6) of type I for t ∈ [0, 1].
(ii) the right-hand side function f (t, u(t, λ̄;χ); λ̄) is an increasing function in u(t, λ̄;χ).
(iii) two sequences, {vn(t)} and {wn(t)}, are computed using the iterative scheme

C
0D

p
t vn+1(t) = f (t, vn(t); λ̄), vn+1(0) = u(0), vn+1(1) = u(1)

C
0D

p
t wn+1(t) = f (t,wn(t); λ̄), wn+1(0) = u(0), wn+1(1) = u(1), (22)

for which

v1(t) <w1(t),

w2(t) <v2(t). (23)

Then,
(a) (a)For t ∈ [0, 1] it holds that

v0(t) < w0(t).

(b) (b)The terms computed using (22) form alternating sequences{v2n+1(t),w2n+1(t)} and
{w2n(t), v2n(t)}, satisfying
v0(t) < v1(t) < w1(t) < . . . < v2n+1(t) < w2n+1(t) < u∞(t) <

< w2n(t) < v2n(t) < . . . < w2(t) < v2(t) < w0(t)
(24)

for n ≥ 0. Each term vn+1(t), wn+1(t) is computed from the corresponding integral equa-
tions:

vn+1(t) = α0 + ηt + (α1 − α0 − η)tp + 1
�(p)

[∫ t

0
(t − s)p−1f (s, vn(s); λ̄) ds

+tp
∫ 1

0
(1 − s)p−1f (s, vn(s); λ̄) ds

]
,

(25)

wn+1(t) = α0 + ζ t + (α1 − α0 − ζ )tp + 1
�(p)

[∫ t

0
(t − s)p−1f (s,wn(s); λ̄) ds

+tp
∫ 1

0
(1 − s)p−1f (s,wn(s); λ̄) ds

]
, (26)

where the unknown parameters η and ζ denote η := v′(0) and ζ := w′(0) and are computed
by solving the determining equations

	(η) = 0, (27)

	(ζ) = 0, (28)

where

	(η) = �(p + 1) (α1 − α0 − η) − p
∫ 1

0
(1 − s)p−1f (s, v(s); λ̄) ds.

	(ζ) = �(p + 1) (α1 − α0 − ζ ) − p
∫ 1

0
(1 − s)p−1f (s,w(s); λ̄) ds.
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(c) (c)Let x0(t) := v0(t) and {xn(t)} := {v2n+1(t),w2n+1(t)} for n ≥ 0, that is, x1(t) :=
v1(t), x3(t) := w1(t), . . . and similarly, {yn(t)} := {v2n(t),w2n(t)} for n ≥ 0, that is,
y0(t) := w0(t), y1(t) := v2(t), y3(t) := w2(t), . . .. Then the sequences {xn(t)} and {yn(t)}
converge uniformly to the limits x∞(t) and y∞(t), respectively, and x∞(t) < y∞(t).

(d) (d)For the limit functions x∞(t) and y∞(t) it holds that x∞(t) = y∞(t) = u∞(t), where
u∞(t) is the unique solution to BVP (6).

Proof: (a) From Definition 2.3 of lower and upper solutions of type I, we have that

C
0D

p
t v0(t) − f (t, v0(t); λ̄) > 0, (29)

C
0D

p
t w0(t) − f (t,w0(t); λ̄) < 0. (30)

Subtracting (29) from (30) and using the Mean Value Theorem, we obtain

C
0D

p
t (w0(t) − v0(t)) − ∂f

∂u
(u∗)(w0 − v0) < 0,

where u∗ = γ v0 + (1 − γ )w0, 0 ≤ γ ≤ 1. Since f (t, u(t); λ̄) is an increasing function,− ∂f
∂u (u∗) < 0.

Moreover, (w0 − v0)(0) ≥ 0, (w0 − v0)(1) ≥ 0, thus, by Lemma 2.4 it follows that w0(t) > v0(t).
(b) Let z0(t) = v0(t) − v1(t). Then

C
0D

p
t z0(t) = C

0D
p
t v0(t) − f (t, v0(t); λ̄) > 0,

z0(0) ≤ 0, z0(1) ≤ 0

thus, by Lemma 2.5, v0(t) < v1(t).
Now let z1(t) = v1(t) − v2(t) and consider

C
0D

p
t z1(t) = f (t, v0(t); λ̄) − f (t, v1(t); λ̄) < 0,

z1(0) ≤ 0, z1(1) ≤ 0,

where the first inequality follows from the fact that f (t, u(t); λ̄) is increasing in u(t). Thus, by
Lemma 2.5, v1(t) < v2(t).

Assume that v2k+1(t) < v2k(t) for k ≥ 1. We will show that it also holds for k+ 1. Consider
z2k+1(t) = v2k+1(t) − v2k+2(t), for which

C
0D

p
t z2k+1(t) = f (t, v2k(t); λ̄) − f (t, v2k+1; λ̄) > 0,

z2k+1(0) ≤ 0, z2k+1(1) ≤ 0,

thus, by Lemma 2.5, v2k+1(t) < v2k+2(t). Now let z2k+3(t) = v2k+3(t) − v2k+2(t) and consider

C
0D

p
t z2k+3(t) = f (t, v2k+2(t); λ̄) − f (t, v2k+1(t); λ̄) > 0

z2k+3(0) ≤ 0, z2k+3(1) ≤ 0.

Hence, v2k+3(t) < v2k+2(t), which implies that v2n+1(t) < v2n(t) holds for all n ≥ 1.
Using the same method, we can show that w1(t) < w0(t), w1(t) < w2(t), and w2n+1(t) < w2n(t)

for n ≥ 0.
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From the assumptions and inequalities in (23), it follows that

v0(t) < v1(t) < w1(t) < w2(t) < v2(t) < w0(t).

Assume that v2k+1(t) < w2k+1(t). We will show that this holds for n = k+ 1. Consider z2k+2(t) =
w2k+2(t) − v2k+2(t):

C
0D

p
t z2k+2(t) = f (t,w2k+1(t); λ̄) − f (t, v2k+1(t); λ̄) > 0

z2k+2(0) ≤ 0, z2k+2(1) ≤ 0,

thus, by Lemma 2.5, w2k+2(t) < v2k+2(t). Now let z2k+3(t) = v2k+3(t) − w2k+3(t) and consider

C
0D

p
t z2k+3(t) = f (t, v2k+2(t); λ̄) − f (t,w2k+2(t); λ̄) > 0

z2k+3(0) ≤ 0, z2k+3(1) ≤ 0,

thus, v2k+3(t) < w2k+3(t). This implies that v2n+1(t) < w2n+1(t) holds for n ≥ 1.
Similarly, we can show that w2n(t) < v2n(t) for n ≥ 1.
Thus far we have seen that

v0(t) < v2n+1(t) < v2n(t),

w2n+1(t) < w2n(t) < w0(t),

v2n+1(t) < w2n+1(t),

w2n(t) < v2n(t).

Combining these inequalities results in (24).
(c) The sequence xn(t) is a monotonically increasing sequence of continuous functions, bounded

from above by w0(t), defined on the compact domain [0, 1], and the sequence yn(t) is a monoton-
ically decreasing sequence of continuous functions, bounded from below by v0(t), defined on the
compact domain [0, 1]. Hence, xn(t) and yn(t) converge uniformly to their respective limits, x∞(t)
and y∞(t). From part (a) we know that xn(t) < yn(t) for all n ≥ 0, thus x∞(t) = limn→∞ xn(t) <
limn→∞ yn(t) = y∞(t).

(d) Passing to the limit when n → ∞ in the integral equations (25) and (26) yields

v∞(t) = α0 + ηt + (α1 − α0 − η)tp + 1
�(p)

[∫ t

0
(t − s)p−1f (s, v∞(s); λ̄) ds

+tp
∫ 1

0
(1 − s)p−1f (s, v∞(s); λ̄) ds

]
,

w∞(t) = α0 + ζ t + (α1 − α0 − ζ )tp + 1
�(p)

[∫ t

0
(t − s)p−1f (s,w∞(s); λ̄) ds

+tp
∫ 1

0
(1 − s)p−1f (s,w∞(s); λ̄) ds

]
,

which are equivalent to equation (14). The limit function u∞(t) is the unique solution to (14), thus,
v∞(t) = w∞(t) = u∞(t). �

Theorem 4.2: Consider the BVP (6). Assume that

(i) v0, w0 ∈ C2([0, 1],R) are lower and upper solutions to the BVP (6) of type II with v0(t) < w0(t)
for t ∈ [0, 1].
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(ii) the right-hand side function f (t, u(t, λ̄;χ); λ̄) is an increasing function in u(t, λ̄;χ).
(iii) two sequences, {vn(t)} and {wn(t)}, are computed using the iterative scheme

C
0D

p
t vn+1(t) = f (t, vn(t); λ̄), vn+1(0) = u(0), vn+1(1) = u(1)

C
0D

p
t wn+1(t) = f (t,wn(t); λ̄), wn+1(0) = u(0), wn+1(1) = u(1),

for which

v0(t) < w1(t),

v1(t) < w0(t). (31)

Then,
(a) (a)The terms computed using (31) form alternating sequences {v2n(t),w2n+1(t)} and

{v2n+1(t),w2n(t)}, satisfying

v0(t) < w1(t) < v2(t) < . . . < v2n(t) < w2n+1(t) < u∞(t) <

< v2n+1(t) < w2n(t) < . . . < w2(t) < v1(t) < w0(t)

for n ≥ 0. Each term vn+1(t), wn+1(t) is computed from the following integral equations:

vn+1(t) = α0 + ηt + (α1 − α0 − η)tp + 1
�(p)

[∫ t

0
(t − s)p−1f (s, vn(s); λ̄) ds

+tp
∫ 1

0
(1 − s)p−1f (s, vn(s); λ̄) ds

]
,

wn+1(t) = α0 + ζ t + (α1 − α0 − ζ )tp + 1
�(p)

[∫ t

0
(t − s)p−1f (s,wn(s); λ̄) ds

+tp
∫ 1

0
(1 − s)p−1f (s,wn(s); λ̄) ds

]
,

where the unknown parameters η and ζ denote η := v′(0) and ζ := w′(0) and are computed
by solving the determining equations (27) and (28).

(b) (b)Let {xn(t)} := {v2n(t),w2n+1(t)} and {yn(t)} := {v2n+1(t),w2n(t)} for n ≥ 0. Then the
sequences {xn(t)} and {yn(t)} converge uniformly to the limits x∞(t) and y∞(t), respectively,
and x∞(t) < y∞(t).

(c) (c)For the limit functions x(t) and y(t) it holds that x∞(t) = y∞(t) = u∞(t), where u(t) is
the unique solution to BVP (6).

Proof: The proof of Theorem 4.2 follows the lines of the proof of Theorem 4.1. �

Remark 4.1: As in the standard numerical-analytic technique, the values of parameters η and ζ are
computed by solving the corresponding approximate determining equations (27) and (28) at each
iteration step n.

Remark 4.2: It is worth emphasising that the lower and upper solutions method can also be used to
simplify the computations of the approximating sequence. In particular, we can construct a sequence
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ũn(t, λ̄;χ), given by

ũ0(t) = v0(t) + w0(t)
2

,

ũn(t, λ̄;χ) = α0 + χ t + tp(α1 − α0 − χ)

+ 1
�(p)

[∫ t

0
(t − s)p−1f (s, ũn−1(s, λ̄;χ) ds

−tp
∫ 1

0
(1 − s)p−1f (s, ũn−1(s, λ̄;χ) ds

]
. (32)

The statements of Theorem 3.3 hold for the new sequence ũn(t, λ̄;χ) and the terms in it are of simpler
form, which leads to a reduction in the computational time.

5. Model examples

Motivated by Marynets [22] we consider the non-linear FDE

C
0D

p
t u(t) = −2λet

(1 + et)2
u(t)2 − 2ωet(1 − et)

(1 + et)3
(:= f (t, u(t); λ)), t ∈ [0, 1], (33)

where p = 1.98 andω is a scalarwhich in the context of the flowof theAntarctic CircumpolarCurrent
is corresponding to the dimensionless Coriolis parameter being equal to 4649.56.

We attach to (33) Dirichlet boundary conditions

u(0) = α,

u(1) = β ,
(34)

and we will use the theory presented in the previous sections to construct sequences of approxima-
tions to FBVP (33), (34) for an increasing and decreasing right-hand side. We will also show how the
lower and upper solutions method can be used to improve the efficiency of the numerical-analytic
technique.

We define BVP (33), (34) on the domain

D := {−112 ≤ u(t) ≤ 67}.
Using notations (7) and (8) we conclude that for the given FDE in (33) the following relations hold:

A = 0.5, B = 844.91, M = 12530.56, K = 223.88,

which means that we must choose a value for the parameter λ, such that

� <
22·1.98−1�(2.98)
0.5 · 223.88 = 0.14.

5.1. Monotone sequence

Weset λ̄ = 0.05,α = −1,β = −1.5, and apply the numerical-analytic technique to construct approx-
imations to BVP (33), (34). The values of the parameterχn, computed using (19), are shown inTable 1.
The left panel in Figure 1 shows the first 5 approximations, which form a decreasing monotone
sequence. The right panel of the same figure shows a comparison of the right- and left-hand sides
of equation (33) with u4(t, λ;χ) plugged in, which shows a good agreement between the two sides of
the equation for the fourth approximation term.
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Figure 1. Plots of approximation terms un(t, λ;χ) for n = 0, . . . 4 (left) and left- (blue solid line) and right- (red dotted line) hand
sides of equation (33) with u4(t, λ̄,χ) (right).

Table 1. Numerically calculated
parameter values for n = 0, . . . , 4.

n χn

0 −197.2411150
1 −216.9564132
2 −219.5465627
3 −219.8524774
4 −219.8865503

5.2. Alternating sequence

We consider BVP (33), (34) again and choose a negative parameter value in order to have an increas-
ing right-hand side function. We set λ̄ = −0.1 and α = 1, β = 1.5 and apply the numerical-analytic
technique, as before. The computed values of χn for n = 0, . . . , 4 are shown in Table 2. The terms of
the alternating sequence are un(t, λ;χ) for n = 0, . . . , 4 are shown in the left panel of Figure 2, and the
left- and right- hand sides of equation (33) with u4(t, λ;χ) are plotted in the right panel of the same
figure. As before, we have good agreement between the left- and right-hand sides of the equation with
the fourth approximation term.

Table 2. Numerically calculated
parameter values for n = 0, . . . , 4.

n χn

0 −161.0107502
1 −145.4552893
2 −147.9224531
3 −147.5308218
4 −147.5895933

5.3. Lower and upper solutions

Let us now apply the lower/upper solutions method to construct approximate solutions to
BVP (33), (34) with α = 1, β = 1.5.
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Figure 2. Plots of approximation terms un(t, λ̄;χ) for n = 0, . . . , 4 (left) and left- (blue solid line) and right- (red dotted line) hand
sides of equation (33) with u4(t, λ̄,χ) (right).

We choose lower and upper solutions v0(t) = −148, w0(t) = 10, which satisfy the following
differential inequalities:

C
0D

1.98
t v0(t) = 0 > f (t, v0(t); λ),

v0(0) = −148 < u(0), v0(1) = −148 < u(1),
C
0D

1.98
t w0(t) = 0 < f (t,w0(t); λ),

w0(0) = 10 > u(0), v0(1) = 10 > u(1),

that is, they are upper and lower solutions of type I.
The parameter values shown in Table 3 are computed by solving the approximate determining

equations for η and ζ . Implementing (25), (26) yields the sequence terms plotted in the left panel of
Figure 3, which also shows a plot of u4(t, λ̄;χ), obtained with the numerical-analytic technique for
comparison. A comparison of the left- and right-hand sides of the BVP with the term w4(t) plugged
in is shown in the right panel of Figure 3.

Figure 3. Plots of lower and upper solution sequence terms vn(t) and wn(t) for n = 1, . . . , 4 (left) and left- (blue solid line) and
right- (red dotted line) hand sides of equation (33) withw4(t) (right).
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Table 3. Numerically calculated parameter values
for n = 0, . . . , 4.

n ηn ζn

1 −140.4727058 −144.2719451
2 −148.8266232 −148.0843496
3 −147.3904246 −147.5096299
4 −147.6109510 −147.5924731

Lastly, we construct the sequence ũn(t, λ̄; χ̄ ), given in (32), by taking

ũ0(t) = v0(t) + w0(t)
2

= −148 + 10
2

,

ũn(t, λ̄;χ) = α0 + χ t + tp(α1 − α0 − χ)

+ 1
�(p)

[∫ t

0
(t − s)p−1f (s, ũn−1(s, λ̄;χ) ds

−tp
∫ 1

0
(1 − s)p−1f (s, ũn−1(s, λ̄;χ) ds

]
.

The computes values of the parameter χn are shown in Table 4. The resulting plots for n = 1, . . . , 4
are shown in the left panel of Figure 4, along with a plot of u4(t). The right panel of the same figure
shows a comparison between the left- and right-hand sides of the BVP with ũ4(t). The recorded CPU
time for calculating the values of χn for n = 1, . . . , 4 was 79.8 s. In comparison, the CPU time for the
calculation of the parameter values using the sequences (11) was 410.3 s.

Figure 4. Plots of terms ũn(t, λ̄;χ) for n = 1, . . . , 4 (left) and left- (blue solid line) and right- (red dotted line) hand sides of
equation (33) with ũ4(t, λ̄;χ) (right).

Table 4. Numerically calculated parameter values
for n = 0, . . . , 4.

n χn

1 −143.4749133
2 −148.2377335
3 −147.4848912
4 −147.4848912
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6. Conclusion

In this paper we studied a FBVP with a parameter-dependent right-hand side. We used fixed point
theory to determine the values of the parameter for which there exists a unique solution to the BVP.
The numerical-analytic technique was applied to construct a sequence of approximate solutions and
their monotonicity behaviour was analysed. The approximation terms form a well-ordered sequence
when the right-hand side in the FDE is strictly decreasing, whereas for a strictly increasing right-
hand side, the approximating sequence is alternating. In the latter case, we applied the lower and
upper solutionsmethod in conjunctionwith the numerical-analytic technique to construct sequences
of approximations, and proved their uniform convergence to the exact solution of the BVP. This
approach can be used to simplify the terms of the approximating sequence and to therefore reduce
the computational time. Our theoretical results are confirmed by a model example obtained from the
equation modelling the motion of a gyre in the Southern hemisphere.
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