The influence of defects at the steel/concrete interface for pitting corrosion initiation studied through X-ray Computed Tomography and image analysis
More Info
expand_more
Abstract
Although corrosion of reinforcement is a well-known issue for the construction industry, there are still open questions about some fundamentals of corrosion in reinforced concrete. These points include, among others, which are the most sensitive locations of the steel/concrete interface for pitting corrosion to initiate and to propagate. In this study, X-ray computed tomography (CT-scan) is used to characterize eight 20-years-old reinforced concrete cores naturally deteriorated due to chloride-induced corrosion. The volume loss due to corrosion of the reinforcement was quantified through image analysis of CT-scans. The volume loss of the steel was found to be higher for steel rebars embedded in Portland cement specimens rather than in blended cement specimens. Furthermore, CT-scans revealed that the deepest and most frequent corrosion pits, as well as the consequent highest volume loss of steel, were present at the portion of the reinforcement closer to the outdoor environment and in proximity to air voids at the steel/concrete interface. As a consequence, the highest decrease of structural performance of the rebars would be likely localized at those locations. Therefore, the presence of interfacial air voids should be considered as relevant factor when assessing the risk of corrosion of reinforced concrete structures.