A 1.9 mW 250 MHz Bandwidth Continuous-Time ΣΔ Modulator for Ultra-Wideband Applications

More Info
expand_more

Abstract

This paper proposes an architecture design approach for a wideband continuous-time (CT) ΣΔ modulator with ultra-low oversampling ratio (OSR). The ultra-low OSR is beneficial in terms of power consumption for both the clock distribution network and the subsequent decimation filter. In this work, three signal feedforward paths and an additional feedback path are used to reduce the power consumption. Extensive system-level simulations demonstrate the effectiveness of the proposed solutions. Furthermore, this work verifies the proposed methods by transistor-level design and simulations of a 2 GHz 4th-order CT ΣΔ modulator achieving an SNDR of 46 dB in a signal band of 250 MHz while consuming only 1.91 mW of power in 40 nm CMOS. The proposed solutions enable CT ΣΔ modulators for low power ultra-wideband (UWB) applications.

Files

A_1.9_mW_250_MHz_Bandwidth_Con... (pdf)
(pdf | 1.65 Mb)
Unknown license

Download not available