Semantics for two-dimensional type theory

More Info
expand_more

Abstract

We propose a general notion of model for two-dimensional type theory, in the form of comprehension bicategories. Examples of comprehension bicategories are plentiful; they include interpretations of directed type theory previously studied in the literature. From comprehension bicategories, we extract a core syntax, that is, judgment forms and structural inference rules, for a two-dimensional type theory. We prove soundness of the rules by giving an interpretation in any comprehension bicategory. The semantic aspects of our work are fully checked in the Coq proof assistant, based on the UniMath library. This work is the first step towards a theory of syntax and semantics for higher-dimensional directed type theory.

Files

Src.pdf
(pdf | 1.18 Mb)
Unknown license

Download not available