A Modeling Tool for Reconfigurable Skills in ROS

More Info
expand_more

Abstract

Known attempts to build autonomous robots rely on complex control architectures, often implemented with the Robot Operating System platform (ROS). The implementation of adaptable architectures is very often ad hoc, quickly gets cumbersome and expensive. Reusable solutions that support complex, runtime reasoning for robot adaptation have been seen in the adoption of ontologies. While the usage of ontologies significantly increases system reuse and maintainability, it requires additional effort from the application developers to translate requirements into formal rules that can be used by an ontological reasoner. In this paper, we present a design tool that facilitates the specification of reconfigurable robot skills. Based on the specified skills, we generate corresponding runtime models for self-adaptation that can be directly deployed to a running robot that uses a reasoning approach based on ontologies. We demonstrate the applicability of the tool in a real robot performing a patrolling mission at a university campus.

Files

A_Modeling_Tool_for_Reconfigur... (pdf)
(pdf | 0.435 Mb)
- Embargo expired in 09-01-2022
Unknown license