Online function minimization with convex random relu expansions

More Info
expand_more

Abstract

We propose CDONE, a convex version of the DONE algorithm. DONE is a derivative-free online optimization algorithm that uses surrogate modeling with noisy measurements to find a minimum of objective functions that are expensive to evaluate. Inspired by their success in deep learning, CDONE makes use of rectified linear units, together with a nonnegativity constraint to enforce convexity of the surrogate model. This leads to a sparse and cheap to evaluate surrogate model of the unknown optimization objective that is still accurate and that can be minimized with convex optimization algorithms. The CDONE algorithm is demonstrated on a toy example and on the problem of hyper-parameter optimization for a deep learning example on handwritten digit classification.

Files

08168109.pdf
(pdf | 0.266 Mb)
Unknown license

Download not available