Investigation of drying-induced non-uniform deformation, stress, and micro-crack propagation in concrete
More Info
expand_more
Abstract
Concrete generally deforms and cracks in a non-uniform manner under drying-induced stress. This study used the lattice fracture model to simulate the drying-induced non-uniform deformations, stresses, and micro-crack propagation in concrete. Experiments were designed to validate the lattice fracture model, wherein the drying-induced non-uniform deformations and micro-crack patterns in concrete were measured using a digital image correlation technique and a fluorescent epoxy impregnation method, respectively. It was found that the simulated non-uniform deformations and micro-crack patterns were close to the experimental observations. The interaction mechanism between drying-induced non-uniform stresses and micro-cracks was analysed based on the validated lattice fracture model. The micro-cracks were found to cause stress concentration both in coarse aggregate and the mortar that covered coarse aggregate, which could lead to high micro-cracking risk as drying continues.