A mold insert case study on topology optimized design for additive manufacturing

More Info
expand_more

Abstract

The Additive Manufacturing (AM) of injection molding inserts has gained popularity during recent years primarily due to the reduced design-to-production time and form freedom offered by AM. In this paper, Topology Optimization (TO) is performed on a metallic mold insert which is to be produced by the Laser Powder Bed Fusion (LPBF) technique. First, a commercially available TO software is used, to minimize the mass of the component while ensuring adequate mechanical response under a prescribed loading condition. The commercial TO tool adopts geometry-based AM constraints and achieves a mass reduction of ~50 %. Furthermore, an in-house TO method has been developed which integrates a simplified AM process model within the standard TO algorithm for addressing the issue of local overheating during manufacturing. The two topology optimized designs are briefly compared, and the advantages of implementing manufacturing constraints into the TO algorithm are discussed.
Introduction

Files