A new tool to assess the resilience of an urban environment under an earthquake scenario
More Info
expand_more
Abstract
This paper presents a new methodology to predict the potential damage and physical impacts of an earthquake on the built environment. A new methodology to the urbanized systems and large-scale simulations within a seismic scenario are explored, by evaluating multipurpose codes for numerical simulation. A 3-D building shape of a standard virtual city is developed for evaluating the seismic effects at increasing intensities. Once the buildings are integrated into the city, parallel simulations are applied to compute the global behavior of buildings after a disruptive scenario. Monte Carlo Simulations (MCS) are applied to take into account the epistemic uncertainties associated with geometry and mechanical properties within the range of observations. For each set of buildings' data, the nonlinear dynamic analysis is performed through SAP2000 Application Programming Interface (API) in order to assess the dynamic response of the buildings in an organized and automatic fashion. Accordingly, the city is mapped into different zones representative to the possibility of having different levels of damage (complete, extensive, moderate, and slight). This tool supports decision-makers to explore how their community will respond to a disruptive event, to develop different strategies for monitoring and control the emergency in urbanized areas.